ROOF TOP PACKAGE UNIT SCHEDULE

<table>
<thead>
<tr>
<th>Tag</th>
<th>Unit</th>
<th>Location</th>
<th>Service</th>
<th>Model</th>
<th>Series</th>
<th>Year</th>
<th>Type</th>
<th>Size</th>
<th>Supply</th>
<th>MUA</th>
<th>Max.</th>
<th>Coil</th>
<th>Cond.</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G1</td>
<td>ROOF OFFICE</td>
<td>10.0</td>
<td>3200</td>
<td>1260</td>
<td>2208</td>
<td>2660</td>
<td>8590</td>
<td>3200</td>
<td>219.1</td>
<td>71.7</td>
<td>1.2</td>
<td>126.9</td>
<td>186.4</td>
</tr>
<tr>
<td>2</td>
<td>G2</td>
<td>ROOF STORAGE</td>
<td>12.5</td>
<td>1680</td>
<td>1580</td>
<td>400</td>
<td>480</td>
<td>1400</td>
<td>1576</td>
<td>8.2</td>
<td>5.3</td>
<td>1.2</td>
<td>126.9</td>
<td>186.4</td>
</tr>
<tr>
<td>3</td>
<td>G3</td>
<td>ROOF VENT 6.4</td>
<td>10.0</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>1507</td>
<td>9.4</td>
<td>5.3</td>
<td>1.2</td>
<td>126.9</td>
<td>186.4</td>
<td></td>
</tr>
</tbody>
</table>

INFRARED TUBE HEATER SCHEDULE

<table>
<thead>
<tr>
<th>Tag</th>
<th>Model</th>
<th>Location</th>
<th>Type</th>
<th>Size</th>
<th>Power</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SCHUMCK</td>
<td>20"</td>
<td>1.9</td>
<td>185</td>
<td>1,2, 3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SCHUMCK</td>
<td>30"</td>
<td>1.9</td>
<td>185</td>
<td>1,2, 3</td>
<td></td>
</tr>
</tbody>
</table>

GAS FIRED UNIT HEATER SCHEDULE

<table>
<thead>
<tr>
<th>Tag</th>
<th>Model</th>
<th>Location</th>
<th>Size</th>
<th>Power</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ROOFR</td>
<td>GARAGE</td>
<td>75</td>
<td>60</td>
<td>4</td>
</tr>
</tbody>
</table>

BUILDING AIR BALANCE SCHEDULE

<table>
<thead>
<tr>
<th>Equipment</th>
<th>COTA</th>
<th>COTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTU</td>
<td>2600</td>
<td>2600</td>
</tr>
</tbody>
</table>

SPLIT SYSTEM INDOOR UNIT SCHEDULE

<table>
<thead>
<tr>
<th>Tag</th>
<th>Model</th>
<th>Location</th>
<th>Service</th>
<th>HVAC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MITSUB</td>
<td>from room 120</td>
<td>IT room</td>
<td>1000</td>
<td>300</td>
</tr>
</tbody>
</table>

SPLIT CONDENSING UNIT SCHEDULE

<table>
<thead>
<tr>
<th>Tag</th>
<th>Model</th>
<th>Location</th>
<th>Size</th>
<th>Capacity</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MITSUB</td>
<td>ROOF</td>
<td>6</td>
<td>24</td>
<td>1,2, 3, 4, 5, 6, 7</td>
</tr>
</tbody>
</table>

DIFFUSER, GRILLE AND REGISTER SCHEDULE

<table>
<thead>
<tr>
<th>Tag</th>
<th>Model</th>
<th>System</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>TITUS</td>
<td>24"</td>
<td>30"</td>
<td>1,2, 3, 4, 5, 6, 7</td>
</tr>
</tbody>
</table>

Footnotes:
- [1]: MUA: Maximum Unit Capacity
- [2]: Coil: Condenser and Ductless Split Condenser
- [3]: Capacity: Nameplate Capacity
- [4]: Notes: Additional Notes
- [5]: Construction: Building Construction
- [6]: Finish: Ceiling Finish

Building Air Balance Schedule Notes:
- RTU: 2600

Split System Indoor Unit Schedule Notes:
- MITSUB: MITSUMI
- From room 120: IT room
- IT room: Wall Mounted
- 1000: 300

Split Condensing Unit Schedule Notes:
- MITSUB: MITSUMI
- ROOF: 6
- 24: 30
- 1,2, 3, 4, 5, 6, 7: Additional Notes

Diffuser, Grille and Register Schedule Notes:
- TITUS: TITUS
- 24" | 30": Additional Notes
- Nameplate Capacity: Additional Notes
- Ceiling Finish: Additional Notes
- Building Construction: Additional Notes
- Ceiling Finish: Additional Notes
Fan Schedule

| TAG | OPR | MODEL | LOCATION | VOLUME | AIR DUC (CM) | SPS | TEMP | PRESS | RPM | POWER HP | VOLT | PH | CAP | REA | BLDG | MTR | ELECTR | NVLTS | ACCE | FKG | BLDG |
|-----|-----|-------|----------|--------|-------------|-----|------|-------|-----|--------|------|----|-----|-----|-----|------|-------|-------|-------|------|------|------|
| OF 1 | COOK | GC-125 | COOK | 143 | 8.125 | NA | CENTRAL | G125 | 1075 | CEILING | DIRECT | 45 | 277/15 | N | NA | 0.9 | 25 | A | 1.5 | OF-1 |
| OF 2 | COOK | GC-149 | COOK | 143 | 8.125 | NA | CENTRAL | G149 | 1075 | CEILING | DIRECT | 45 | 277/15 | N | NA | 2.5 | 25 | A | 1.5 | OF-2 |
| OF 3 | COOK | GC-149 | COOK | 143 | 8.125 | NA | CENTRAL | G149 | 1075 | CEILING | DIRECT | 45 | 277/15 | N | NA | 7.0 | 25 | B | 1.5 | OF-3 |
| OF 4 | COOK | HC/1/20G | HC/1/20G | 149 | 8.125 | NA | CENTRAL | G149 | 1075 | CEILING | DIRECT | 45 | 277/15 | N | NA | 10.5 | 25 | B | 1.5 | OF-4 |
| OF 5 | COOK | HC/1/20G | HC/1/20G | 149 | 8.125 | NA | CENTRAL | G149 | 1075 | CEILING | DIRECT | 45 | 277/15 | N | NA | 10.5 | 25 | B | 1.5 | OF-5 |
| OF 6 | COOK | HC/1/10G | ROOF | 140 | 8.125 | NA | CENTRAL | G140 | 1075 | CEILING | DIRECT | 45 | 277/15 | N | NA | 7.0 | 25 | B | 1.5 | OF-6 |
| OF 7 | COOK | HC/1/10G | DRY ROOF | 140 | 8.125 | NA | CENTRAL | G140 | 1075 | CEILING | DIRECT | 45 | 277/15 | N | NA | 8.1 | 25 | B | 1.5 | OF-7 |
| OF 8 | COOK | GC-129 | ROOF | 149 | 8.125 | NA | CENTRAL | G129 | 1075 | CEILING | DIRECT | 45 | 277/15 | N | NA | 0.9 | 25 | A | 1.5 | OF-8 |

NOTES:
1. VFD LOCK-OUT (OSMIS) - 5 preparations contaminant sensor.
2. VFD LOCK-OUT (OSMIS) - 5 preparations contaminant sensor.
3. VFD LOCK-OUT (OSMIS) - 5 preparations contaminant sensor.
4. VFD LOCK-OUT (OSMIS) - 5 preparations contaminant sensor.
5. VFD LOCK-OUT (OSMIS) - 5 preparations contaminant sensor.

Electric Heater Schedule

<table>
<thead>
<tr>
<th>TAG</th>
<th>OPR</th>
<th>MODEL</th>
<th>LOCATION</th>
<th>VOLUME</th>
<th>AREA (MET)</th>
<th>VLF</th>
<th>TEMP</th>
<th>LAY</th>
<th>WALL</th>
<th>ELECTR</th>
<th>LAT</th>
<th>MTR</th>
<th>OPTH</th>
<th>ACCE</th>
<th>BLDG</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV1</td>
<td>CWHK</td>
<td>AAW4416P</td>
<td>MCT 1/1</td>
<td>4</td>
<td>18.2.7</td>
</tr>
<tr>
<td>EV2</td>
<td>CWHK</td>
<td>AAW4416P</td>
<td>MCT 1/1</td>
<td>4</td>
<td>18.2.7</td>
</tr>
</tbody>
</table>

NOTES:
1. TERMINAL CURVE SWITCH
2. THERmostat FEEDBACK THERMOSTAT
3. VAULT OVER WALL EMERGENCY

Single Duct Variable Air Volume Box Schedule (All VAV Box Frames May Not Be Used)

<table>
<thead>
<tr>
<th>MAP.</th>
<th>OPR</th>
<th>MODEL</th>
<th>LOCATION</th>
<th>VOLUME</th>
<th>AREA (MET)</th>
<th>CO2 CONTROL</th>
<th>VLF</th>
<th>TEMP</th>
<th>LAT</th>
<th>MTR</th>
<th>OPTH</th>
<th>ACCE</th>
<th>BLDG</th>
</tr>
</thead>
</table>

NOTES:
1. 24 VAULT STEP DOWN TRANSFORMER
2. SINGLE POINT ELECTRICAL CONNECTION
3. AIRFLOW MODULATION
4. AIRFLOW MODULATION
5. AIRFLOW MODULATION
6. AIRFLOW MODULATION
1. PROVIDE STRAIGHT DUCT OF STANDARD INLET SIZE FOR A MINIMUM OF THREE TIMES THE DUCT DIAMETER AND A MAXIMUM LENGTH OF 120".

2. FLEX DUCT AT INLET CONNECTION IS NOT ACCEPTABLE.

3. PROVIDE STRAIGHT DUCT OF INCREASED INLET DUCT SIZE FOR LENGTHS OVER 120".

4. PROVIDE 45° ENTRY OR 45° LEAD IN AT EACH CONNECTION TO RECTANGULAR MEDIUM PRESSURE DUCTWORK PER SMACNA (3RD EDITION) FIGURE 4-6.

5. PROVIDE CONICAL SADDLE TAP OR TEE AT EACH CONNECTION TO ROUND OR OVAL MEDIUM PRESSURE DUCTWORK PER SMACNA (3RD EDITION) FIGURE 3-6.

6. PROVIDE STRAIGHT DUCT OF STANDARD INLET SIZE FOR THREE TIMES THE DUCT DIAMETER OR A MINIMUM OF 24".

CEILING DIFFUSER INSTALLATION

1. PROVIDE STRAIGHT DUCT OF STANDARD INLET SIZE FOR A CURVATURE OF THREE TIMES THE DUCT DIAMETER.

2. FLEX DUCT AT INLET CONNECTION IS NOT ACCEPTABLE.

3. PROVIDE STRAIGHT DUCT OF INCREASED INLET DUCT SIZE FOR LENGTHS OVER 120".

4. PROVIDE 45° ENTRY OR 45° LEAD IN AT EACH CONNECTION TO RECTANGULAR MEDIUM PRESSURE DUCTWORK PER SMACNA (3RD EDITION) FIGURE 4-6.

5. PROVIDE CONICAL SADDLE TAP OR TEE AT EACH CONNECTION TO ROUND OR OVAL MEDIUM PRESSURE DUCTWORK PER SMACNA (3RD EDITION) FIGURE 3-6.

6. PROVIDE STRAIGHT DUCT OF STANDARD INLET SIZE FOR THREE TIMES THE DUCT DIAMETER OR A MINIMUM OF 24".

VAV TERMINAL UNIT INLET CONDITIONS

1. PROVIDE STRAIGHT DUCT OF STANDARD INLET SIZE FOR A CURVATURE OF THREE TIMES THE DUCT DIAMETER.

2. FLEX DUCT AT INLET CONNECTION IS NOT ACCEPTABLE.

3. PROVIDE STRAIGHT DUCT OF INCREASED INLET DUCT SIZE FOR LENGTHS OVER 120".

4. PROVIDE 45° ENTRY OR 45° LEAD IN AT EACH CONNECTION TO RECTANGULAR MEDIUM PRESSURE DUCTWORK PER SMACNA (3RD EDITION) FIGURE 4-6.

5. PROVIDE CONICAL SADDLE TAP OR TEE AT EACH CONNECTION TO ROUND OR OVAL MEDIUM PRESSURE DUCTWORK PER SMACNA (3RD EDITION) FIGURE 3-6.

6. PROVIDE STRAIGHT DUCT OF STANDARD INLET SIZE FOR THREE TIMES THE DUCT DIAMETER OR A MINIMUM OF 24".

VAV TERMINAL UNIT WITH ELECTRIC REHEAT COIL

1. PROVIDE STRAIGHT DUCT OF STANDARD INLET SIZE FOR A CURVATURE OF THREE TIMES THE DUCT DIAMETER.

2. FLEX DUCT AT INLET CONNECTION IS NOT ACCEPTABLE.

3. PROVIDE STRAIGHT DUCT OF INCREASED INLET DUCT SIZE FOR LENGTHS OVER 120".

4. PROVIDE 45° ENTRY OR 45° LEAD IN AT EACH CONNECTION TO RECTANGULAR MEDIUM PRESSURE DUCTWORK PER SMACNA (3RD EDITION) FIGURE 4-6.

5. PROVIDE CONICAL SADDLE TAP OR TEE AT EACH CONNECTION TO ROUND OR OVAL MEDIUM PRESSURE DUCTWORK PER SMACNA (3RD EDITION) FIGURE 3-6.

6. PROVIDE STRAIGHT DUCT OF STANDARD INLET SIZE FOR THREE TIMES THE DUCT DIAMETER OR A MINIMUM OF 24".
1. Roofing membrane to be flashed watertight to the curb (by general contractor).
2. Cutting of the roof assembly to accommodate duct penetrations shall be the responsibility of the general contractor.
3. Seal all around between duct(s) and gypsum board with an approved acoustic sealant (by general contractor).
4. Seal around full perimeter of curb / gypsum board interface with an approved acoustic sealant (by general contractor).

Notes:

1. Man bars in steel bar or angle frame screwed to the wall framing at duct opening.
2. Man bars required for duct openings greater than 96 sq. inches, unless one dimension is less than 6 inches, that penetrate partition types A2, A3, A6, A6A, A6B, A7, 8, 9, roof penetrations, and exterior wall penetrations.
3. If code requires the installation of a fire damper, integrity of man bars shall be maintained.
4. Man bars required for duct openings greater than 96 sq. inches that penetrate partition type A5, in field offices only, if room has key pad or high security lock (X-10 or S&G).
MECHANICAL DUCT SYSTEM NOTES

1. DUCT SIZES ARE INDICATED IN DRAWS TO THE SMALLEST FEASIBLE DIMENSION. DUCT CUMPS ARE USED TO DESIGN CONSTRUCTION OF DUCT IN VARIOUS SIZES.

2. CONTRACTOR SHALL CONSTRUCT DUCTWORK AND THE TYPHOON BAGS TO BE USED.

3. EVALUATE THE COMPLETION OF DUCTWORK TO THE SMALLEST FEASIBLE DIMENSION. DUCTWORK SHALL BE COMPLETED TO THE SMALLEST FEASIBLE SIZE.

4. BRANCH DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

5. BRANCH DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

6. BRANCH DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

7. BRANCH DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

8. BRANCH DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

9. BRANCH DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

10. BRANCH DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

11. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

12. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

13. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

14. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

15. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

16. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

17. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

18. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

19. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

20. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

21. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

22. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

23. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

24. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

25. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

26. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

27. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

28. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

29. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

30. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

31. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

32. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

33. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

34. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

35. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

36. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

37. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

38. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

39. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

40. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

41. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

42. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

43. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

44. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

45. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

46. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

47. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

48. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

49. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.

50. DUCT CONNECTIONS TO DUCTWORK SHALL NOT BE THE SAME DEGREE AS THE DUCTWORK ABLE PLUGGED DUCTWORK.
WORK NOTES:

1. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

2. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

3. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

4. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

5. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

6. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

7. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

8. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

9. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

10. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

11. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

12. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

13. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

14. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

15. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

16. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

17. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

18. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

19. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

20. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

21. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

22. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

23. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

24. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

25. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

26. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

27. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

28. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

29. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.

30. Use static air intake terminations for vents, ensure moisture barriers and vapour barriers are installed to prevent condensation.
WORK NOTES:

1. DOMESTIC HOT WATER CONCENTRIC VENT TERMINATION.
2. UNIT HEATER CONCENTRIC VENT TERMINATION.
3. PROVIDE GOOSENECK TERMINATION TYPICAL.