NORTHERN COLORADO REGIONAL FORENSIC LABORATORY

SPR2020-0001

West Greeley Tech Center Third Minor Subdivision Lot 11A
2329 115th Ave Greeley CO 80634

WEARNSMAN ENGINEERING AND LAND DEVELOPMENT LLC
Eric Wernsman
16495 Essex Rd S
Platteville CO 80651
Cell 970-539-2656

Rob Molloy
980 Norway Maple Drive
Loveland, CO 970-988-5301

WELD COUNTY BUILDING AND GROUNDS
1105 "H" St
Greeley CO 80631
970-304-6531

RSAP INC
801 8TH ST, UNIT #120
GREELY CO 80631
970-346-0151

INDEX

C COVER SHEET
C1 SITE / UTILITIES PLAN
C2 ELECTION PLAN
C3 GRADING PLAN
C4 BASIN PLAN
C5 EROSION CONTROL
C6 DETAILS
C7 DETAILS
A4 ARCHITECTURAL ELEVATIONS
A13 TRASH ENCLOSURE DETAILS
PH1 PHOTOMETRIC PLAN
EP0.0 LIGHTING DETAILS
EP0.1 LIGHTING DETAILS
ES1 LANDSCAPE PLAN

INAGEN FORENSIC LABORATORY

Elevations may differ for the City of Greeley’s Subdivision Permit. The City of Greeley’s Subdivision Permit may be obtained from the City of Greeley or the Greeley Public Utilities Department. The City of Greeley’s Subdivision Permit may be obtained from the City of Greeley or the Greeley Public Utilities Department.

The City of Greeley’s Subdivision Permit may be obtained from the City of Greeley or the Greeley Public Utilities Department.
Maintenance / Inspection Notes:

1. Routine preventative maintenance and inspections will be performed bi-weekly as well as after any precipitation or snowmelt event. At the time of inspection, the erosion control measures and all construction equipment located on-site will be inspected for leaks, spills, or damage and the site will be reviewed for unexpected soil erosion or sedimentation events.

2. All necessary maintenance and repair activities will be completed immediately after discovering a deficiency in the system. Accumulated sediment and debris will be removed weekly from the erosion control systems, or at any time sediment or debris adversely affects the functionality of the system.

3. Storm drain inlet protection, straw wattles, and silt fence must be inspected as part of the regular inspections and repaired when necessary. Accumulated sediment shall be removed and properly disposed of.

4. Storm drain inlet protection shall be maintained daily. Stone shall be added and repairs performed when required. Contractor will be required to sweep or vacuum any visible sediment that is tracked onto City streets.

5. Storm drain inlet protection shall be maintained daily. Stone shall be added and repairs performed when required. Contractor will be required to sweep or vacuum any visible sediment that is tracked onto City streets.

6. Storm drain inlet protection shall be maintained daily. Stone shall be added and repairs performed when required. Contractor will be required to sweep or vacuum any visible sediment that is tracked onto City streets.

7. Storm drain inlet protection shall be maintained daily. Stone shall be added and repairs performed when required. Contractor will be required to sweep or vacuum any visible sediment that is tracked onto City streets.

8. Storm drain inlet protection shall be maintained daily. Stone shall be added and repairs performed when required. Contractor will be required to sweep or vacuum any visible sediment that is tracked onto City streets.

9. Storm drain inlet protection shall be maintained daily. Stone shall be added and repairs performed when required. Contractor will be required to sweep or vacuum any visible sediment that is tracked onto City streets.

10. A Qualified Stormwater Manager shall conduct inspections required by the Erosion and Sediment Control Plan.

This Erosion & Sediment Control Plan has been submitted to the City of Greeley in fulfillment of the City Criteria. Additional erosion and sediment control measures may be required if unforeseen problems occur or if the submitted plan does not function as intended. The requirements of this plan shall run with the land and be the obligation of the landowner until such time as the plan is properly completed, modified, or voided. Therefore, this Erosion & Sediment Control Plan is in effect and does not fulfill the requirements of the Colorado Department of Public Health & Environment Construction Permit for a Stormwater Management Plan (SWMP).

Accepted by: _______________________________

Accepted by: _______________________________

NOTE: EROSION CONTROL MEASURES SHALL REMAIN IN PLACE UNTIL SITE HAS ACHIEVED FINAL STABILIZATION.
Vehicle Tracking Control (VTC)

Concrete Washout Area (CWA)

Silt Fence (SF)

Rock Sack (RS)
1. AREA OUT OF SCOPE.
2. EXISTING FIXTURES NOT INCLUDED IN CALCULATION, UNLESS NOTED OTHERWISE.
3. EXISTING FIXTURE INCLUDED IN CALCULATION.
4. REMOVE EXISTING POLE MOUNTED FIXTURE.

SCALE: 1" = 1'-0"
LIGHT FIXTURE SCHEDULE

<table>
<thead>
<tr>
<th>SHEET</th>
<th>DESCRIPTION</th>
<th>MODEL</th>
<th>MOUNTING</th>
<th>LAMP</th>
<th>MTRL.</th>
<th>VOLTAGE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP0.0</td>
<td>LED POCKET LUMINAIRE (PAR 38)</td>
<td>LRP</td>
<td>POLE</td>
<td>LED</td>
<td>12V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP0.1</td>
<td>LED POCKET LUMINAIRE (PAR 38)</td>
<td>LRP</td>
<td>WALL</td>
<td>LED</td>
<td>15</td>
<td>120-277</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

WDGE1 LED
Architectural Wall Sconce

Specifications:
- Height: 3.75"
- Width: 3.75"
- Depth: 3.75"
- Weight: 4 lbs

Introduction:
The WDGE1 LED family is designed for easy installation and maintenance, offering a wide range of applications from outdoor illumination to architectural design. The fixture's modern design enhances the aesthetic appeal of various environments, providing an energy-efficient and long-lasting solution.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>LUMEN</th>
<th>COLOR</th>
<th>T/R</th>
<th>LIFE (HRS)</th>
<th>LUMEN/WW</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In-Place LED Luminous in Cold Cathode

<table>
<thead>
<tr>
<th>MODEL</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>LUMEN</th>
<th>COLOR</th>
<th>T/R</th>
<th>LIFE (HRS)</th>
<th>LUMEN/WW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example:

<table>
<thead>
<tr>
<th>MODEL</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>LUMEN</th>
<th>COLOR</th>
<th>T/R</th>
<th>LIFE (HRS)</th>
<th>LUMEN/WW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONCRETE POLE BASE
Re: Structural Drawings for Concrete Requirements, Concrete Depth, Rebar and Reinforcement Requirements. Shown Here for Electrical and General Arrangement Information Only.

LINE VOLTAGE CIRCUITING
LOW-VOLTAGE CIRCUITING (WHERE APPLICABLE)
20'-0' #4 BARE COPPER PANCAKE COIL

ELECTRICAL DRAWING INDEX

<table>
<thead>
<tr>
<th>SHEET</th>
<th>DESCRIPTION</th>
<th>SHEET NUMBER</th>
<th>SHEET TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP0.0</td>
<td>ELECTRICAL LEGENDS SCHEDULES AND INDEX</td>
<td>EP0.0</td>
<td>ELECTRICAL LEGENDS SCHEDULES AND INDEX</td>
</tr>
<tr>
<td>EP0.1</td>
<td>LIGHTING SPECIFICATION SHEETS</td>
<td>PH1.1</td>
<td>LIGHTING SPECIFICATION SHEETS</td>
</tr>
<tr>
<td>EP0.2</td>
<td>PHOTOMETRIC PLANS</td>
<td>PH2.1</td>
<td>PHOTOMETRIC PLANS</td>
</tr>
</tbody>
</table>

TOTAL: 3 SHEETS

FINISH GRADE:
4'-0''
Re: Structural Drawings
20'-0''
Door & Hardware Schedule

<table>
<thead>
<tr>
<th>Door Type</th>
<th>Hardware</th>
<th>Number</th>
<th>Location</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>H1</td>
<td>1</td>
<td>Lobby</td>
<td>Standard</td>
</tr>
<tr>
<td>D2</td>
<td>H2</td>
<td>2</td>
<td>Hall</td>
<td>Deluxe</td>
</tr>
<tr>
<td>D3</td>
<td>H3</td>
<td>3</td>
<td>Office</td>
<td>Basic</td>
</tr>
<tr>
<td>D4</td>
<td>H4</td>
<td>4</td>
<td>Bathroom</td>
<td>Premium</td>
</tr>
</tbody>
</table>

Legend

- **Door Types**
 - D1: Standard Door
 - D2: Deluxe Door
 - D3: Basic Door
 - D4: Premium Door

- **Frame Elevations**

- **Frame Types**
 - Type A: Steel Frame
 - Type B: Aluminum Frame
 - Type C: Wood Frame
Structural General Notes

General Requirements

- **Deferred Submittals:**
 - At the option of the architect/engineer, submit submittals for review a minimum of two weeks prior to the installation.
 - Submit shop drawings to the architect/engineer for review, and shop drawings shall be approved by the architect/engineer.
 - Submit shop drawings for review before starting any construction.

- **Rejection:**
 - Alterations that require substantial effort to review will not be reviewed unless authorized by the owner.
 - Alterations that are reviewed will be reviewed according to the following schedule.

Schedule of Special Inspections

<table>
<thead>
<tr>
<th>Inspection Type</th>
<th>Frequency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>As Required</td>
<td>Inspection of the entire project.</td>
</tr>
<tr>
<td>Structural Steel</td>
<td>As Required</td>
<td>Inspection of all structural steel.</td>
</tr>
<tr>
<td>Concrete</td>
<td>As Required</td>
<td>Inspection of all concrete.</td>
</tr>
</tbody>
</table>

Concrete Reinforcement

- **Reinforcement:**
 - Use A706 Grade 60 reinforcement for structural steel. Use A706 Grade 60 reinforcement for structural steel.
 - Use A615 Grade 60 reinforcement for non-structural steel.

- **Deformation:**
 - Deformation shall be not more than 0.1% of the span.

- **Mismatching:**
 - Mismatching shall be not more than 0.001% of the tooth length.

Structural Steel

- **Material:**
 - Use ASTM A36 steel for structural steel.
 - Use ASTM A572 Grade 50 steel for non-structural steel.

- **Welds:**
 - Use welds in accordance with AWS D1.1 and AWS D1.4.

- **Fasteners:**
 - Use ASTM A325 or ASTM A325N bolts for structural steel.
 - Use ASTM A490 or ASTM A490M bolts for non-structural steel.

Design Criteria

- **Building Code:**
 - Use ASCE 7-16 for Wind and Seismic Design.

- **Loadings:**
 - Use dead load of 10 psi for roofs and 360 psi for floors.
 - Use live load of 20 psi for roofs and 240 psi for floors.

- **Fibres:**
 - Use fibres in accordance with ACI 318-14.

- **Loading Factors:**
 - Use loading factors as recommended by ASCE 7-16.

- **Material Properties:**
 - Use material properties in accordance with ASTM A36 and ASTM A572.

Soils and Foundations

- **Soils:**
 - Use soils in accordance with ASTM D2487.

- **Foundations:**
 - Use foundations in accordance with ASCE 7-16.

Post-Installed Anchors into Concrete and Masonry

- **Anchors:**
 - Use post-installed anchors in accordance with ACI 318-14.

- **Adhesives:**
 - Use adhesives in accordance with ASTM C929.

- **Cement:**
 - Use cement in accordance with ASTM C150.

Steel Floor and Roof Deck

- **Floor and Roof:**
 - Use steel floor and roof decks in accordance with ASME A500.

- **Fasteners:**
 - Use fasteners in accordance with ASTM A325 or ASTM A490.

References

- **Building Codes:**

- **Material Standards:**
 - ASTM A36 for Structural Steel.
 - ASTM A572 Grade 50 for Non-Structural Steel.

- **Welding Codes:**
 - AWS D1.1 for Structural Welding Code.
 - AWS D1.1X for Structural Welding Code.

- **Adhesives and Cements:**
 - ASTM C929 for Structural Adhesives.
 - ASTM C150 for Structural Cements.

- **SteelDeck:**
 - Use SteelDeck in accordance with specifications.

- **Fibres:**
 - Use fibres in accordance with ACI 318-14.
BRICK VENEER

1. The use of brick and masonry units shall conform to the requirements of the Masonry Specifications for Masonry Structures. The ASHRAE Guide for Masonry Structures of 2011 shall be used as a reference. The ASHRAE Guide is available online at www.ashe.org.

2. Masonry shall be installed in accordance with the manufacturer’s instructions and shall conform to the requirements of the manufacturer’s product data.

3. Masonry shall be installed in accordance with the manufacturer’s instructions and shall conform to the requirements of the manufacturer’s product data.

REINFORCED UNIT MASONRY

2. Masonry shall be installed in accordance with the manufacturer’s instructions and shall conform to the requirements of the manufacturer’s product data.

3. Masonry shall be installed in accordance with the manufacturer’s instructions and shall conform to the requirements of the manufacturer’s product data.

OPEN WEB STEEL JOISTS (OWSJ) AND JOIST GIRDERS (JG)

1. The use of open web steel joists and joist girder shall conform to the requirements of the American Society of Civil Engineers (ASCE) Standard 31-10, "Requirements for Steel Joists in Building Structures." The ASCE Standard is available online at www.asce.org.

2. Joist and girder design shall be based on the same load conditions as the structural design of the building. The designer shall use the ASCE Standard to determine the joist and girder sizes.

3. Joist and girder design shall be based on the same load conditions as the structural design of the building. The designer shall use the ASCE Standard to determine the joist and girder sizes.

COLD FORGED STEEL FRAMING

1. The use of cold forged steel framing shall conform to the requirements of the American Institute of Steel Construction (AISC) Specification for the Design of Cold Formed Steel Structural Members. The AISC Specification is available online at www.aisc.org.

2. Steel framing shall be designed and fabricated in accordance with the AISC Specification. The designer shall use the AISC Specification to determine the steel framing sizes.

3. Steel framing shall be designed and fabricated in accordance with the AISC Specification. The designer shall use the AISC Specification to determine the steel framing sizes.

EXISTING BUILDING - CLASSIFICATION OF WORK

1. The classification of work for existing buildings shall conform to the requirements of the International Existing Building Code (IEBC). The IEBC is available online at www.iccsafe.org.

2. The classification of work for existing buildings shall conform to the requirements of the International Existing Building Code (IEBC). The IEBC is available online at www.iccsafe.org.

3. The classification of work for existing buildings shall conform to the requirements of the International Existing Building Code (IEBC). The IEBC is available online at www.iccsafe.org.

DESTRUCTION

1. All work shall be performed in accordance with the approved plans and specifications. The contractor shall be responsible for coordinating all work with the owner and engineer to ensure that the work is completed in accordance with the approved plans and specifications.

2. The contractor shall be responsible for coordinating all work with the owner and engineer to ensure that the work is completed in accordance with the approved plans and specifications.

3. The contractor shall be responsible for coordinating all work with the owner and engineer to ensure that the work is completed in accordance with the approved plans and specifications.
PLAN LOADING LEGEND

1. ROOF LIVE / SNOW LOAD
 - Roof Live Load: 20 PSF
 - Roof Snow Load: 30 PSF

2. SNOW DRIFT SURCHARGE
 - (In addition to snow load)

3. FLOOR STORAGE DEAD LOAD
 - 45 PSF

4. FLOOR STORAGE LIVE LOAD
 - 125 PSF

5. ROOF DEAD LOAD
 - 20 PSF

6. VAULT CEILING DEAD LOAD

7. VAULT CEILING LIVE LOAD

8. NET UPLIFT DIAGRAM

NOTE:
1. Net uplift loads are based on expected operating force of 1.5 PSF.
FOOTING PLAN

SCALE: 1/8" = 1'-0"

1. Contractor shall ensure proper concrete clearing around reinforcing steel per the structural drawings.
2. T.O.F. as indicated in the plans notes the top of the isolated concrete footing, not the embedment depth.
3. Construction shall assure proper concrete clearances around reinforcing steel per the structural drawings.
4. Footings below metal building columns are sized based on assumed loading. Footings shall be either 2. T.O.F. as indicated on the plans notes the top of the isolated concrete footing, not the embedment depth.

MIN. REQUIREMENTS FOR ANCHOR BOLTS IN CONCRETE

1. All material shall be cut as specified.
2. Bolt size and depth apply to concrete installation only and may not be used in cdx.
3. See sheet S101 for additional information regarding post-tension anchors.

ISOLATED FOOTING SCHEDULE

<table>
<thead>
<tr>
<th>REMARKS</th>
<th>WIDTH</th>
<th>THICKNESS</th>
<th>TOP</th>
<th>BOTTOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>WF1</td>
<td>1' - 0"</td>
<td>1' - 0"</td>
<td>NONE (2)</td>
<td>#5 CONT. W/ #5 AT 14" O.C. TRANSVERSE</td>
</tr>
<tr>
<td>TD2</td>
<td>2' - 0"</td>
<td>2' - 6"</td>
<td>(4) #5 CONT.</td>
<td>(4) #5 CONT.</td>
</tr>
<tr>
<td>F7</td>
<td>7' - 0"</td>
<td>7' - 0"</td>
<td>(15) #5 EACH WAY</td>
<td>(15) #5 EACH WAY</td>
</tr>
</tbody>
</table>

SOILS PREPARATION AND SLAB BASE

1. Receive fill shall be scarified a minimum depth of 8", moisture content not greater than 11%.
2. Organic materials should be removed from the proposed construction area. Reference the geotechnical report for clarification and further recommendations.
3. All interior slabs. Reference the geotechnical report for soils preparation and slab base requirements. See sheet S101 for detailing, slab information, steel columns, and baseplate requirements.

GENERAL NOTES

1. All material shall be cut as specified.
2. Bolt size and depth apply to concrete installation only and may not be used in cdx.
3. See sheet S101 for additional information regarding post-tension anchors.

ANCHORS AND DEPTHS APPLY TO CONCRETE INSTALLATION ONLY AND MAY NOT BE USED IN CMU.

EMBED 3"

- 1"
- 9/16"
- 7/16"
- 5/8"
- 3/4"
- 1/2"
- 1/4"

BOLT DIAMETER

- 1 1/4"
- 7/8"
- 3/4"
- 1/2"
- 3/8"

BASEPLATE REQUIREMENTS

- 1"
- 9/16"
- 7/16"
- 5/8"
- 3/4"
- 1/2"
- 1/4"

SLAB BASE

- 3/4"
- 5/8"
- 3/8"

FOLLOW ALL THE MANUFACTURER'S INSTALLED ANCHORS.

- 6 3/4"
- 4 1/2"
- 3 1/2"
- 2 1/2"
- 7/8"

- 1 1/4"
- 7/8"
- 3/4"
- 1/2"
- 3/8"

- 3/4"
- 5/8"
- 3/8"

- 1"
- 9/16"
- 7/16"
- 5/8"
- 3/4"
- 1/2"
- 1/4"

- 3/4"
- 5/8"
- 3/8"

SIMPSON BASEPLATE REQUIREMENTS

- 3/4"
- 5/8"
- 3/8"

EMBED

- 3/4"
- 5/8"
- 3/8"

BASEPLATE REQUIREMENTS

- 3/4"
- 5/8"
- 3/8"

FOLLOW ALL THE MANUFACTURER'S INSTALLED ANCHORS.

- 6 3/4"
- 4 1/2"
- 3 1/2"
- 2 1/2"
- 7/8"

- 1 1/4"
- 7/8"
- 3/4"
- 1/2"
- 3/8"

- 3/4"
- 5/8"
- 3/8"

- 1"
- 9/16"
- 7/16"
- 5/8"
- 3/4"
- 1/2"
- 1/4"

- 3/4"
- 5/8"
- 3/8"

SIMPSON BASEPLATE REQUIREMENTS

- 3/4"
- 5/8"
- 3/8"

EMBED

- 3/4"
- 5/8"
- 3/8"

GENERAL NOTES

1. All material shall be cut as specified.
2. Bolt size and depth apply to concrete installation only and may not be used in cdx.
3. See sheet S101 for additional information regarding post-tension anchors.

S100
CONTINUOUS FOOTING SCHEDULE

<table>
<thead>
<tr>
<th>FOOTING ID</th>
<th>DIMENSIONS (HxWxT)</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>S501</td>
<td>2' - 0" x 4' - 0" x 0"</td>
<td></td>
</tr>
<tr>
<td>S501</td>
<td>2' - 0" x 4' - 0" x 0"</td>
<td></td>
</tr>
<tr>
<td>S501</td>
<td>2' - 0" x 4' - 0" x 0"</td>
<td></td>
</tr>
</tbody>
</table>

ISOLATED FOOTING SCHEDULE

<table>
<thead>
<tr>
<th>FOOTING ID</th>
<th>DIMENSIONS (HxWxT)</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>S501</td>
<td>2' - 0" x 4' - 0" x 0"</td>
<td></td>
</tr>
<tr>
<td>S501</td>
<td>2' - 0" x 4' - 0" x 0"</td>
<td></td>
</tr>
<tr>
<td>S501</td>
<td>2' - 0" x 4' - 0" x 0"</td>
<td></td>
</tr>
</tbody>
</table>

FOUNDATION PLAN NOTES:

1. CONTRACTOR SHALL ASSURE PROPER CONCRETE CLEARANCES AROUND REINFORCING STEEL PER THE STRUCTURAL DRAWINGS. CONTRACTOR SHALL LOCATE AND VERIFY THE FOLLOWING W/ OTHER DISCIPLINES PRIOR TO POURING:
 - T.O. SLAB
 - B.O. SLAB
 - B.O. OF FOUNDATION

2. CONTRACTOR SHALL ASSURE PROPER CONCRETE CLEARANCES AROUND REINFORCING STEEL PER THE STRUCTURAL DRAWINGS. CONTRACTOR SHALL LOCATE AND VERIFY THE FOLLOWING W/ OTHER DISCIPLINES PRIOR TO POURING:
 - T.O. SLAB
 - B.O. SLAB
 - B.O. OF FOUNDATION

3. CONTRACTOR SHALL ASSURE PROPER CONCRETE CLEARANCES AROUND REINFORCING STEEL PER THE STRUCTURAL DRAWINGS. CONTRACTOR SHALL LOCATE AND VERIFY THE FOLLOWING W/ OTHER DISCIPLINES PRIOR TO POURING:
 - T.O. SLAB
 - B.O. SLAB
 - B.O. OF FOUNDATION

GENERAL NOTES:

- Dimensions are indicated in feet with the exception of doors and windows which are indicated in inches.
- The structure is designed to be earthquake-resistant.
- The foundation is designed to support the weight of the building and the expected loads from the environment.
- The building is designed to comply with local building codes and regulations.

FOUNDATION PLAN

- Checked by: Greenwood Village, CO 80111
- 303.770.8884
SLAB DIMENSION PLAN

2201 10TH AVENUE
GREENLEY, CO

WELD COUNTY CRIME LAB STORAGE BUILDING

1/24/2020 PERMIT SET

FLOOR DRAIN, TYP. #6 HAIRPIN WITH 12'-0" LEGS, 90 DEGREE BEND, TYP.

80' - 0" TRANSITION FROM 6" SLAB TO 4" SLAB ON GRADE

4" SLAB ON GRADE WITH #5 AT 12" O.C. LONGITUDINAL AND #5 AT 18" O.C. TRANSVERSE CENTERED IN SLAB THICKNESS

FFE = 100' - 0"

HAIRPINS SHALL NOT EXTEND INTO GARAGE AREA SLAB

COPYRIGHT THESE PLANS ARE AN INSTRUMENT OF SERVICE AND ARE THE PROPERTY OF GALLOWAY, AND MAY NOT BE DUPLICATED, DISCLOSED, OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF GALLOWAY. COPYRIGHTS AND INFRINGEMENTS WILL BE ENFORCED AND PROSECUTED.
VAULT ROOF - CONCRETE OVER STEEL DECK

DECK TYPE: VULCRAFT 22 GA. 2VLI DECK
FINISH: 36/4, 18" O.C. AT PERIMETER
SUPPORT ATTACHMENT: #10 TEK SCREWS AT 12" O.C. MAX
ATTACHMENT PATTERN: G60 GALVANIZED
SIDE LAP FASTENERS: * EQUALLY SPACED, NOT TO EXCEED 3'-0" O.C.

CONCRETE TYPE: f'c = 4000 PSI NORMAL WEIGHT DEPTH: 2 1/2"
REINFORCING: 6x6 W1.4 x W1.4 WWF LAPPED 6" MIN MID-DEPTH OF SLAB
HILTI X-EDN 19 THQ12 AT PATTERN BELOW

COMPOSITE DECK SPAN: 28'-0" 1'-2"

VAULT CEILING PLAN
Scale: 3/8" = 1'-0"
<table>
<thead>
<tr>
<th>f'c = 3,000 PSI</th>
<th>NO. 3 (M #10)</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO. 4 (M #13)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>NO. 5 (M #16)</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>NO. 6 (M #19)</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>NO. 7 (M #22)</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>NO. 8 (M #25)</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>NO. 9 (M #29)</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f'c = 4,000 PSI</th>
<th>NO. 10 (M #32)</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO. 11 (M #36)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>NO. 14 (M #43)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>NO. 18 (M #57)</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. All dimensions shown are in inches</td>
</tr>
<tr>
<td>2. If bar is confined by ties per Table 25.4.9.3 of ACI318-14, multiply lap length by 0.75.</td>
</tr>
<tr>
<td>3. If concrete is lightweight, multiply lap length by 0.75.</td>
</tr>
</tbody>
</table>

Bar #3
- DIA.: 0.375" |

Bar #4
- DIA.: 0.500" |

Bar #5
- DIA.: 0.625" |

Bar #6
- DIA.: 0.750" |

Bar #7
- DIA.: 0.875" |

Bar #8
- DIA.: 1.000" |

Bar #9
- DIA.: 1.128" |

Notes:
- Top bars are defined as horizontal bars placed with more than 12" of fresh concrete below them. All other bars are non-top bars.
- Lap lengths in tables above are based on clear C over being greater than 1.0db (bar diameters) and min. clear spacing between bars being greater than 2.0db.
- If bar is epoxy coated, multiply lap length by 1.5.
- If concrete is lightweight, multiply lap length by 0.75.
NOTES:

LOOSE LINTEL SCHEDULE

1. STEEL LINTELS, EXCEPT WHERE FABRICATED OF APPROVED CORROSION RESISTANT STEEL OR OF STEEL LINTELS, ARE TO BE PLACED WITH FACE OF VERTICAL LEG NO FURTHER THAN 1/4" FROM BACK.

2. PROVIDE MIN. 6" BEARING AT EACH END, TYPICAL.

3. STEEL PLATE W/ (4) 3/4"Ø x 5" H.A.S. - CMU

4. L6x4x1/2 x8" LONG STEEL ANGLE, (SIMPSON TITEN HD OR EQUAL) @ CONT. ANCHOR TO CMU W/ 3/4"Ø x L4x4x1/4 CONT. STEEL ANGLE LONG LEG HORIZONTAL.

5. OPENING BELOW DETAIL.

6. LOOSE LINTEL STEEL PER ARCH FINISHES PER ARCH.

7. STEEL BEAM BEARING ELEVATION.

8. BEAM BEARING GROUT AS REQUIRED FOR BEAR STEEL BEAM AT #3 TIES WITH STANDARD SLOTS ON BEAM GAGE IN GROUTED CELLS.

9. DO NOT WELD BEAM TO STEEL BEAM PER PLAN WITH (2) 3/4" DIA. H.A.S. SLOTS ON BEAM GAGE IN GROUTED CELLS PER PLAN.

10. BRIDGING AS REQUIRED BY JOIST MFR.

11. L8x4x7/16 COLOR.

12. S601 MASONRY LINTEL AT EXISTING CMU WALL WIDTH.

13. MAX. OPENING TYPICAL OPENING IN END OF CMU WALL.

14. MASONRY LINTEL SIZING SHALL BE USED UNLESS SPECIFICALLY CALLED OUT ON PLANS OR ELEVATIONS.

15. REFER TO PROJECT SPECIFICATIONS WITHIN 4' HORIZONTAL REINFORCING WRAP BARS WITH MASTIC.

16. REFER TO PROJECT SPECIFICATIONS WITHIN 4' VERTICAL CMU CONTROL JOINT.

17. GROUT JAMB CORES WHERE CELLS ARE UNGROUTED TO PREVENT GROUTING OF CELLS TO FORM KEY HORIZONTAL REINFORCING.

18. SLOPING BOND BEAM OPTION AND ARE THE PROPERTY OF GALLOWAY, AND MAY THESE PLANS ARE AN INSTRUMENT OF SERVICE.
COLD FORMED STEEL MEMBER LAP CONNECTIONS

DO NOT NOTCH COLD FORMED STEEL STUD

TRADE READY HEADER & STEEL STUD WALL

STRAP AND BLOCK OPTION

TYPICAL BRIDGING FRAMING

PUNCHOUT REINFORCING OPTIONS

COLD FORMED HEADER - JAMB DETAIL

COLD FORMED HEADER AT STUD WALL

STUD TO ANGLE CONNECTION - CLIP ANGLE

STUD TO TOP TRACK CONNECTION

STUD TO BOTTOM TRACK CONNECTION

COLD FORMED METAL FRAMING INFO. TABLES

COLD FORMED STEEL SILL - JAMB DETAIL

COLD FORMED STEEL HEADER AT STUD WALL

STUD TO ANGLE CONNECTION - SIMPSON CLIP

SCALE: 3" = 1'-0"

COLD FORMED HEADER AT STUD WALL - SIMPSON CLIP

SCALE: 3/4" = 1'-0"

COLD ROLLED STEEL ANGLE SHORTER THAN STUD

16 SCREW EACH SIDE AT EACH STUD JAMBS/ CORNER

16 SCREW EACH FLANGE ATTACHED TO BOTH FLANGES

2) 0.157" Ø P.D.F. EACH SIDE AT TERMINATION POINTS

1) 0.157" Ø P.D.F EACH STUD

16 SCREW AT 12" O.C.

11) 0.157" Ø P.D.F EACH STUD

16 SCREW TO ALLOW WEB TO COPE OUTSIDE HEADER

MIL TO 54 MIL STEEL STUDS

SIMPSON SUBH3.25 FOR 33-150U50

1 1/2" x1 1/4"x16 GA. x1/2"

COPE OUTSIDE HEADER OVERLAP KING STUDS

STRAP AND BLOCK BRIDGING MAY BE USED WITH SINGLE STUD OPTION

ALL HEADER MEMBERS BETWEEN ENDS OF HEADER MUST SPAN ENTIRE LENGTH

ALL HEADER MEMBERS AT WALL FRAMING PER PLAN

16 SCREWS @ EACH FACE OF STUDS

16 SCREW EACH STUD TO ANGLE CONNECTION - CLIP ANGLE

2) 0.157" DIA P.D.F.'S @ TERMINATION POINTS

1) 0.157" Ø P.D.F EACH SIDE AT STUD TERMINATION POINTS

SOLID BLOCKING AT ALL HEADER TERMINATION POINTS

REQUIRED AT ALL STRUCTURAL STEEL COLUMN TERMINATION POINTS

STITCH WELD AT STUD TERMINATION POINTS

16 SCREW AT 12" O.C.

1) 0.157" Ø P.D.F EACH STUD

CRIPPLE STUD TO SUPPORT WALL FRAMING PER PLAN

STUDDING ATTACHMENT OPTIONS

REDUCED THICKNESS AT STUD WALL FRAMING PER PLAN

CRIPPLE STUD TO MATCH WALL FRAMING PER PLAN

ATTACH EACH OPENING ((2) MINIMUM U.N.O.)

FROM PUNCHOUT OF OPENING ((2) MINIMUM U.N.O.)

FLAT STRAPPING SHALL BE TERMINATED AT JAMBS,

SILL, VERTICAL SLIDE AS REQ'D FOR #10 SCREWS.

STRAP AND BLOCK OPTION

STEEL ANGLE SHORTER THAN STUD

SHALL NOT HANG LOOSE

2) #10 AT 6" O.C.

FROM PUNCHOUT OF STUD DEPTHS, CURVED OR STRAIGHT WALLS.

STRAP AND BLOCK BRIDGING MAY BE USED WITH SINGLE STUD OPTION

ATTACH STRAPPING TO STUD WALL FRAMING PER PLAN

SIMPSON SCREWED ATTACHMENT

16 GAUGE TRACK TO MATCH STRUCTURAL STEEL COLUMN

CRIPPLE STUD TO SUPPORT WALL FRAMING PER PLAN

STUDDING ATTACHMENT OPTIONS

REDUCED THICKNESS AT STUD WALL FRAMING PER PLAN

CRIPPLE STUD TO MATCH WALL FRAMING PER PLAN

ATTACH EACH OPENING ((2) MINIMUM U.N.O.)

FROM PUNCHOUT OF OPENING ((2) MINIMUM U.N.O.)

FLAT STRAPPING SHALL BE TERMINATED AT JAMBS,

SILL, VERTICAL SLIDE AS REQ'D FOR #10 SCREWS.

STRAP AND BLOCK OPTION

STEEL ANGLE SHORTER THAN STUD

SHALL NOT HANG LOOSE

2) #10 AT 6" O.C.

FROM PUNCHOUT OF STUD DEPTHS, CURVED OR STRAIGHT WALLS.

STRAP AND BLOCK BRIDGING MAY BE USED WITH SINGLE STUD OPTION

ATTACH STRAPPING TO STUD WALL FRAMING PER PLAN

SIMPSON SCREWED ATTACHMENT

16 GAUGE TRACK TO MATCH STRUCTURAL STEEL COLUMN

CRIPPLE STUD TO SUPPORT WALL FRAMING PER PLAN

STUDDING ATTACHMENT OPTIONS

REDUCED THICKNESS AT STUD WALL FRAMING PER PLAN

CRIPPLE STUD TO MATCH WALL FRAMING PER PLAN

ATTACH EACH OPENING ((2) MINIMUM U.N.O.)

FROM PUNCHOUT OF OPENING ((2) MINIMUM U.N.O.)

FLAT STRAPPING SHALL BE TERMINATED AT JAMBS,

SILL, VERTICAL SLIDE AS REQ'D FOR #10 SCREWS.

STRAP AND BLOCK OPTION

STEEL ANGLE SHORTER THAN STUD

SHALL NOT HANG LOOSE

2) #10 AT 6" O.C.

FROM PUNCHOUT OF STUD DEPTHS, CURVED OR STRAIGHT WALLS.

STRAP AND BLOCK BRIDGING MAY BE USED WITH SINGLE STUD OPTION

ATTACH STRAPPING TO STUD WALL FRAMING PER PLAN

SIMPSON SCREWED ATTACHMENT

16 GAUGE TRACK TO MATCH STRUCTURAL STEEL COLUMN
NOTES:

1. HEADERS AND JAMBS HAVE BEEN SIZED TO RESIST A LATERAL HORIZONTAL LOAD OF 5 PSF PER IBC SECTION 1607.14 WITH A LIMITING DEFLECTION OF L/240 PER IBC TABLE 1604.3.

2. USE SPECIFIED HEADER SIZES UNLESS NOTED OTHERWISE ON PLANS.

3. JAMB STUDS SHALL BE BRACED AT 48" O.C. PER THE COLD FORMED STEEL STUDS (INTERIOR NON-BEARING) SCHEDULE.

4. TOP AND BOTTOM TRACK OF HEADERS TO HAVE A MINIMUM 2" FLANGE AND MATCH THE GAUGE OF THE HEADER JOISTS.

5. BRIDGING SHALL BE INSTALLED AT 48" O.C. MAX PER TYPICAL BRIDGING FRAMING DETAIL ABOVE OR ALTERNATE PROVIDED ON DETAIL SHEETS.

6. INSTALLATION PER ESR.

7. COLD FORMED BOTTOM TRACKS SHALL HAVE MINIMUM 2" LONG FLANGES AND MATCH GAUGE OF WALL STUDS.

8. STUDBS HAVE BEEN SIZED TO RESIST A LATERAL HORIZONTAL LOAD OF 5 PSF PER IBC SECTION 1607.14 WITH A LIMITING DEFLECTION OF L/240 PER IBC TABLE 1604.3.

SPECIFICATIONS:

- Studs have been sized to resist a lateral, horizontal load of 5 psf per IBC Section 1607.14 with a limiting deflection of L/240 per IBC Table 1604.3.
- Use specified header sizes unless noted otherwise on plans.
- Jamb studs shall be braced at 48" O.C. per the cold formed steel studs (interior non-bearing) schedule.
- Top and bottom track of headers to have a minimum 2" flange and match the gauge of the header joists.
- Bridging shall be installed at 48" O.C. max per typical bridging framing detail above or alternate provided on detail sheets.
- Installation per ESR.
- Cold formed bottom tracks shall have minimum 2" long flanges and match gauge of wall studs.
ROOF TOP PACKAGE UNIT SCHEDULE

<table>
<thead>
<tr>
<th>TAG</th>
<th>SHRINK</th>
<th>MODEL</th>
<th>LOCATION</th>
<th>SERVICE</th>
<th>YEAR</th>
<th>QUANTITY IN UNITS</th>
<th>ELECTRICAL DATA</th>
<th>NATURAL GAS FUELING DATA</th>
<th>COIL CAPACITY DATA</th>
<th>ACCESSORIES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

INFRARED TUBE HEATER SCHEDULE

<table>
<thead>
<tr>
<th>TAG</th>
<th>SHRINK</th>
<th>MODEL</th>
<th>LOCATION</th>
<th>LENGTH</th>
<th>ELECTRICAL DATA</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BUILDING AIR BALANCE SCHEDULE

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>CHK</th>
<th>CHK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPLIT SYSTEM INDOOR UNIT SCHEDULE

<table>
<thead>
<tr>
<th>TAG</th>
<th>SHRINK</th>
<th>MODEL</th>
<th>LOCATION</th>
<th>SERVICE</th>
<th>COMMISSIONING</th>
<th>AIR QUANTITIES</th>
<th>ELECTRICAL DATA</th>
<th>WEIGHT (LBS)</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

SPLIT CONDENSING UNIT SCHEDULE

<table>
<thead>
<tr>
<th>TAG</th>
<th>SHRINK</th>
<th>MODEL</th>
<th>SYSTEM</th>
<th>DEVIATION</th>
<th>CAPACITY (MBH)</th>
<th>ELECTRICAL DATA</th>
<th>SIZING DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DIFFUSER, GRILLE AND REGISTER SCHEDULE

<table>
<thead>
<tr>
<th>TAG</th>
<th>SHRINK</th>
<th>MODEL</th>
<th>SYSTEM</th>
<th>DESCRIPTION</th>
<th>CONSTRUCTION</th>
<th>END</th>
<th>FINISH</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **facility ROOF CURB:**
- **PVC PLUMBING:**
- **VERTICAL DUCTS:**
- **SMOKE DETECTOR:**
- **LIGHTING:**
- **ACCESSORIES:**
- **MECHANICAL SCHEDULE:**
- **G2CE.COM**
- **01/24/2020**
- **1039 MAIN STREET**
- **UNIT G**
- **WINDSOR, CO 80550**
- **(970) 460-7400**
NOTES:
1. PROVIDE STRAIGHT DUCT OF STANDARD INLET SIZE FOR A MINIMUM OF THREE TIMES THE DUCT DIAMETER AND A MAXIMUM LENGTH OF 120".
2. FLEX DUCT AT INLET CONNECTION IS NOT ACCEPTABLE.
3. PROVIDE STRAIGHT DUCT OF INCREASED INLET DUCT SIZE FOR LENGTHS OVER 120".
4. PROVIDE 45° ENTRY OR 45° LEAD IN AT EACH CONNECTION TO RECTANGULAR MEDIUM PRESSURE DUCTWORK PER SMACNA (3RD EDITION) FIGURE 4-6.
5. PROVIDE CONICAL SADDLE TAP OR TEE AT EACH CONNECTION TO ROUND OR OVAL MEDIUM PRESSURE DUCTWORK PER SMACNA (3RD EDITION) FIGURE 3-6.
6. PROVIDE STRAIGHT DUCT OF STANDARD INLET SIZE FOR THREE TIMES THE DUCT DIAMETER OR A MINIMUM OF 24".

CEILING DIFFUSER INSTALLATION

VAV BOX CONTROL LOGIC

VAV TERMINAL UNIT INLET CONDITIONS

VAV TERMINAL UNIT WITH ELECTRIC REHEAT COIL

NOTE:
1. PROVIDE STRAIGHT DUCT OF STANDARD INLET SIZE FOR A MINIMUM OF THREE TIMES THE DUCT DIAMETER AND A MAXIMUM LENGTH OF 120".
2. FLEX DUCT AT INLET CONNECTION IS NOT ACCEPTABLE.
3. PROVIDE STRAIGHT DUCT OF INCREASED INLET DUCT SIZE FOR LENGTHS OVER 120".
4. PROVIDE 45° ENTRY OR 45° LEAD IN AT EACH CONNECTION TO RECTANGULAR MEDIUM PRESSURE DUCTWORK PER SMACNA (3RD EDITION) FIGURE 4-6.
5. PROVIDE CONICAL SADDLE TAP OR TEE AT EACH CONNECTION TO ROUND OR OVAL MEDIUM PRESSURE DUCTWORK PER SMACNA (3RD EDITION) FIGURE 3-6.
6. PROVIDE STRAIGHT DUCT OF STANDARD INLET SIZE FOR THREE TIMES THE DUCT DIAMETER OR A MINIMUM OF 24".

NOTE:
1. PROVIDE STRAIGHT DUCT OF STANDARD INLET SIZE FOR A MINIMUM OF THREE TIMES THE DUCT DIAMETER AND A MAXIMUM LENGTH OF 120".
2. FLEX DUCT AT INLET CONNECTION IS NOT ACCEPTABLE.
3. PROVIDE STRAIGHT DUCT OF INCREASED INLET DUCT SIZE FOR LENGTHS OVER 120".
4. PROVIDE 45° ENTRY OR 45° LEAD IN AT EACH CONNECTION TO RECTANGULAR MEDIUM PRESSURE DUCTWORK PER SMACNA (3RD EDITION) FIGURE 4-6.
5. PROVIDE CONICAL SADDLE TAP OR TEE AT EACH CONNECTION TO ROUND OR OVAL MEDIUM PRESSURE DUCTWORK PER SMACNA (3RD EDITION) FIGURE 3-6.
6. PROVIDE STRAIGHT DUCT OF STANDARD INLET SIZE FOR THREE TIMES THE DUCT DIAMETER OR A MINIMUM OF 24".

EXHAUST AIR REGISTERS SIMILAR WITH RIGID DUCT IN LIEU OF FLEX. FOR CEILING SPACES WITHOUT CLEARANCE FOR PROPER BEND AT FLEX DUCT, PROVIDE FULL SIZE INSULATED SHEET METAL ELBOW WITH TURNING VANES FOR SIDE CONNECTION TO DUCTWORK.

NOTE:
1. INSTALL TERMINAL UNIT WITHIN 2'-0" OF FINISHED CEILING FOR ACCESS.
2. SAME CLEARANCE AND INLET REQUIREMENTS APPLY FOR TERMINAL UNITS WITHOUT HEAT.

VAV TERMINAL UNIT WITH ELECTRIC REHEAT COIL

NOTE:
1. INSTALL TERMINAL UNIT WITHIN 2'-0" OF FINISHED CEILING FOR ACCESS.
2. SAME CLEARANCE AND INLET REQUIREMENTS APPLY FOR TERMINAL UNITS WITHOUT HEAT.

NOTE:
1. PROVIDE STRAIGHT DUCT OF STANDARD INLET SIZE FOR A MINIMUM OF THREE TIMES THE DUCT DIAMETER AND A MAXIMUM LENGTH OF 120".
2. FLEX DUCT AT INLET CONNECTION IS NOT ACCEPTABLE.
3. PROVIDE STRAIGHT DUCT OF INCREASED INLET DUCT SIZE FOR LENGTHS OVER 120".
4. PROVIDE 45° ENTRY OR 45° LEAD IN AT EACH CONNECTION TO RECTANGULAR MEDIUM PRESSURE DUCTWORK PER SMACNA (3RD EDITION) FIGURE 4-6.
5. PROVIDE CONICAL SADDLE TAP OR TEE AT EACH CONNECTION TO ROUND OR OVAL MEDIUM PRESSURE DUCTWORK PER SMACNA (3RD EDITION) FIGURE 3-6.
6. PROVIDE STRAIGHT DUCT OF STANDARD INLET SIZE FOR THREE TIMES THE DUCT DIAMETER OR A MINIMUM OF 24".

NOTE:
1. PROVIDE STRAIGHT DUCT OF STANDARD INLET SIZE FOR A MINIMUM OF THREE TIMES THE DUCT DIAMETER AND A MAXIMUM LENGTH OF 120".
2. FLEX DUCT AT INLET CONNECTION IS NOT ACCEPTABLE.
3. PROVIDE STRAIGHT DUCT OF INCREASED INLET DUCT SIZE FOR LENGTHS OVER 120".
4. PROVIDE 45° ENTRY OR 45° LEAD IN AT EACH CONNECTION TO RECTANGULAR MEDIUM PRESSURE DUCTWORK PER SMACNA (3RD EDITION) FIGURE 4-6.
5. PROVIDE CONICAL SADDLE TAP OR TEE AT EACH CONNECTION TO ROUND OR OVAL MEDIUM PRESSURE DUCTWORK PER SMACNA (3RD EDITION) FIGURE 3-6.
6. PROVIDE STRAIGHT DUCT OF STANDARD INLET SIZE FOR THREE TIMES THE DUCT DIAMETER OR A MINIMUM OF 24".

NOTE:
1. PROVIDE STRAIGHT DUCT OF STANDARD INLET SIZE FOR A MINIMUM OF THREE TIMES THE DUCT DIAMETER AND A MAXIMUM LENGTH OF 120".
2. FLEX DUCT AT INLET CONNECTION IS NOT ACCEPTABLE.
3. PROVIDE STRAIGHT DUCT OF INCREASED INLET DUCT SIZE FOR LENGTHS OVER 120".
4. PROVIDE 45° ENTRY OR 45° LEAD IN AT EACH CONNECTION TO RECTANGULAR MEDIUM PRESSURE DUCTWORK PER SMACNA (3RD EDITION) FIGURE 4-6.
5. PROVIDE CONICAL SADDLE TAP OR TEE AT EACH CONNECTION TO ROUND OR OVAL MEDIUM PRESSURE DUCTWORK PER SMACNA (3RD EDITION) FIGURE 3-6.
6. PROVIDE STRAIGHT DUCT OF STANDARD INLET SIZE FOR THREE TIMES THE DUCT DIAMETER OR A MINIMUM OF 24".
WATERTIGHT GASKET ALL AROUND UNIT CASING

- Counterflashing with drip factory supplied.
- Roof curb with field supplied rigid insulation.
- Pressure treated cant strip all around roof insulation.
- Roofing felt.

ROOF STRUCTURE

- Hardwood or steel shims between roof decking and support structure.
- Wood nailer (supplied with curb).

NOTES:

1. Roofing membrane to be flashed watertight to the curb (by general contractor).
2. Cutting of the roof assembly to accommodate duct penetrations shall be the responsibility of the general contractor.
3. Seal all around between duct(s) and gypsum board with an approved acoustic sealant (by general contractor).
4. Seal around full perimeter of curb / gypsum board interface with an approved acoustic sealant (by general contractor).

PITCH TO OUTSIDE ACCESS DOOR

- Half height of duct, 12"x12" minimum (unless otherwise shown on plans).

- Insulate all exposed parts of louver plenum with 2" rigid board insulation if associated ductwork is insulated.
- Caulk all around louver (provided by arch).

NOTES:

1. Man bars in steel bar or angle frame screwed to the wall framing at duct opening.
2. Man bars required for duct openings greater than 96 sq. inches, unless one dimension is less than 6 inches, that penetrate partition types A2, A3, A6, A6A, A6B, A7, 8, 9, roof penetrations, and exterior wall penetrations.
3. If code requires the installation of a fire damper, integrity of man bars shall be maintained.
4. Man bars required for duct openings greater than 96 sq. inches that penetrate partition type A5, in field offices only, if room has keypad or high security lock (X-10 or S&G).
1. **GROWTH**

1.1.1. SET ASIDE AND MANAGE CONSISTENT WITH ALL REQUIREMENTS. REQUIREMENTS SHALL INCLUDE BUT NOT BE LIMITED TO:

1.1.1.1. PREVENT THE ENTRANCE OF DEBRIS INTO THE SYSTEMS.

1.1.1.2. PREVENT THE ENTRANCE OF DEBRIS INTO THE SYSTEMS.

1.1.1.3. PREVENT THE ENTRANCE OF DEBRIS INTO THE SYSTEMS.

1.1.1.4. PREVENT THE ENTRANCE OF DEBRIS INTO THE SYSTEMS.

1.1.2. SET ASIDE AND MANAGE CONSISTENT WITH ALL REQUIREMENTS. REQUIREMENTS SHALL INCLUDE BUT NOT BE LIMITED TO:

1.1.2.1. PREVENT THE ENTRANCE OF DEBRIS INTO THE SYSTEMS.

1.1.2.2. PREVENT THE ENTRANCE OF DEBRIS INTO THE SYSTEMS.

1.1.2.3. PREVENT THE ENTRANCE OF DEBRIS INTO THE SYSTEMS.

1.1.2.4. PREVENT THE ENTRANCE OF DEBRIS INTO THE SYSTEMS.

1.1.3. SET ASIDE AND MANAGE CONSISTENT WITH ALL REQUIREMENTS. REQUIREMENTS SHALL INCLUDE BUT NOT BE LIMITED TO:

1.1.3.1. PREVENT THE ENTRANCE OF DEBRIS INTO THE SYSTEMS.

1.1.3.2. PREVENT THE ENTRANCE OF DEBRIS INTO THE SYSTEMS.

1.1.3.3. PREVENT THE ENTRANCE OF DEBRIS INTO THE SYSTEMS.

1.1.3.4. PREVENT THE ENTRANCE OF DEBRIS INTO THE SYSTEMS.

2. **SYSTEM AND PRODUCT PROTECTION**

2.1. GENERAL REQUIREMENTS.

2.1.1. All systems shall be protected from damage during installation, storage, and transportation. Systems shall be protected to prevent damage due to:

2.1.1.1. Impact, vibration, and shock.

2.1.1.2. Weather and moisture exposure.

2.1.1.3. Mechanical damage caused by improper handling.

2.1.1.4. Electrical damage caused by improper connection.

2.1.2. All systems shall be protected to prevent damage due to:

2.1.2.1. Impact, vibration, and shock.

2.1.2.2. Weather and moisture exposure.

2.1.2.3. Mechanical damage caused by improper handling.

2.1.2.4. Electrical damage caused by improper connection.

3. **DUCT SYSTEM NOTES**

3.1. **GENERAL**

3.1.1. All ductwork shall be constructed in accordance with the latest edition of the National Fire Protection Association (NFPA) Standard 90B, “Building Systems for Smoke Control.” The ductwork shall be designed to meet the requirements of the building code.

3.1.2. All ductwork shall be insulated to R-6 or equivalent, unless otherwise specified.

3.1.3. All ductwork shall be labeled with the following information:

3.1.3.1. Duct type (round or rectangular).

3.1.3.2. Duct size (inch or millimeter).

3.1.3.3. Duct location (inside or outside).

3.1.3.4. Duct material (metal, plastic, fiberglass, etc.).

3.1.3.5. Duct insulation type and thickness.

4. **DUCTWORK INSTALLATION**

4.1. **GENERAL**

4.1.1. All ductwork shall be installed in accordance with the latest edition of the National Fire Protection Association (NFPA) Standard 90B, “Building Systems for Smoke Control.” The ductwork shall be designed to meet the requirements of the building code.

4.1.2. All ductwork shall be insulated to R-6 or equivalent, unless otherwise specified.

4.1.3. All ductwork shall be labeled with the following information:

4.1.3.1. Duct type (round or rectangular).

4.1.3.2. Duct size (inch or millimeter).

4.1.3.3. Duct location (inside or outside).

4.1.3.4. Duct material (metal, plastic, fiberglass, etc.).

4.1.3.5. Duct insulation type and thickness.

5. **DUCTWORK MATERIALS**

5.1. **GENERAL**

5.1.1. All ductwork shall be constructed in accordance with the latest edition of the National Fire Protection Association (NFPA) Standard 90B, “Building Systems for Smoke Control.” The ductwork shall be designed to meet the requirements of the building code.

5.1.2. All ductwork shall be insulated to R-6 or equivalent, unless otherwise specified.

5.1.3. All ductwork shall be labeled with the following information:

5.1.3.1. Duct type (round or rectangular).

5.1.3.2. Duct size (inch or millimeter).

5.1.3.3. Duct location (inside or outside).

5.1.3.4. Duct material (metal, plastic, fiberglass, etc.).

5.1.3.5. Duct insulation type and thickness.
WORK NOTES:

1. All VF's are exterior exhaust. Provide 4" Ø exterior exhaust connection with damper compatible with OA damper operation. Provide 150" minimum length. Provide 8" Ø transition duct as required for unit connection.

2. DO NOT USE RETURN DUCTS. Provide an intake at each location as required.

3. Provide adequate wall opening for transition as required for unit connection. Provide 12" Ø transition duct as required for unit connection.

4. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

5. MV's shall be located at units. Transition duct as required for unit connection.

6. RTU's are exterior supply. Provide an intake at each location as required. Provide 8" Ø transition duct as required for unit connection.

7. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

8. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

9. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

10. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

11. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

12. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

13. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

14. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

15. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

16. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

17. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

18. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

19. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

20. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

21. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

22. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

23. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

24. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

25. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

26. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

27. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

28. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

29. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

30. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

31. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

32. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

33. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

34. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

35. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

36. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

37. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

38. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

39. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

40. Provide adequate wall opening for transition as required for unit connection. Provide 8" Ø transition duct as required for unit connection.

LOCAL, VAV BOX SCHEDULE

<table>
<thead>
<tr>
<th>Tag</th>
<th>Rm. ft. size</th>
<th>Elec. Use (kW)</th>
<th>Max Primary Water Flow (GPM)</th>
<th>Max Primary Water Pressure (PSI)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTU1-1-4</td>
<td>8"</td>
<td>3.5</td>
<td>806</td>
<td>150</td>
<td>380</td>
</tr>
<tr>
<td>RTU1-2-4</td>
<td>8"</td>
<td>2.5</td>
<td>406</td>
<td>115</td>
<td>220</td>
</tr>
<tr>
<td>RTU1-3-4</td>
<td>8"</td>
<td>2</td>
<td>306</td>
<td>26</td>
<td>185</td>
</tr>
<tr>
<td>RTU1-4-4</td>
<td>12"</td>
<td>0</td>
<td>1120</td>
<td>275</td>
<td>580</td>
</tr>
<tr>
<td>RTU1-4-6</td>
<td>8"</td>
<td>2.5</td>
<td>406</td>
<td>115</td>
<td>220</td>
</tr>
<tr>
<td>RTU1-4-8</td>
<td>8"</td>
<td>1.5</td>
<td>416</td>
<td>112.5</td>
<td>225</td>
</tr>
<tr>
<td>RTU1-4-10</td>
<td>6"</td>
<td>0</td>
<td>310</td>
<td>26</td>
<td>360</td>
</tr>
</tbody>
</table>

All local schedule for quick reference only. Refer to VAV Box Schedule on Sheet #1 for VAV Box Control.
WORK NOTES:

1. DOMESTIC HOT WATER CONCENTRIC VENT TERMINATION.
2. UNIT HEATER CONCENTRIC VENT TERMINATION.
3. PROVIDE GOOSENECK TERMINATION. TYPICAL.

SCALE:
ROOF PLAN - MECHANICAL
1/8" = 1'-0"
ELECTRICAL SPECIFICATIONS

PART 1 - GENERAL

A. GENERAL
1. All wiring and electrical devices shall be installed and wired in accordance with applicable codes and the latest revision of the National Electrical Code, NFPA 70, and shall be listed and labeled for the intended application.
2. All materials and equipment shall be installed, connected, tested, and commissioned in accordance with the terms and conditions of this specification.
3. The Contractor shall provide all necessary labor, materials, and equipment for the installation and testing of fire-alarm equipment.
4. The Contractor shall provide written submittals to the Architect and the Owner as required.
5. The Contractor shall coordinate with the Architect and the Owner to ensure compliance with all applicable codes and standards.

B. WIRING AND CABLES
1. All wiring shall be installed in accordance with applicable codes and the latest revision of the National Electrical Code, NFPA 70.
2. All wiring shall be installed in approved raceways and shall comply with the maximum allowable fill of raceways.
3. All wiring shall be protected from physical damage.

C. SYSTEM DESCRIPTION
1. The Fire Alarm System shall consist of all necessary components to detect and report building fires.
2. The Fire Alarm System shall be designed and installed in accordance with NFPA 72, National Fire Alarm Code.
3. The Fire Alarm System shall be provided with automatic transfer to battery supply upon loss of normal AC power.
4. The Fire Alarm System shall be provided with audible appliances for notification.

D. INSTALLATION AND TESTING OF FIRE-ALARM EQUIPMENT
1. The Contractor shall provide submittals as required.
2. The Contractor shall conduct a final inspection and test of the Fire Alarm System.
3. The Contractor shall provide system manufacturers certification that all components have been provided under this section.

E. COMPLIANCE AND TESTS
1. The Contractor shall comply with all applicable codes and standards.
2. The Contractor shall provide system manufacturers certification that all components have been provided under this section.

F. INSTALLATION AND TESTING OF FIRE-ALARM EQUIPMENT
1. The Contractor shall provide written submittals to the Architect and the Owner as required.
2. The Contractor shall conduct a final inspection and test of the Fire Alarm System.
3. The Contractor shall provide system manufacturers certification that all components have been provided under this section.

PART 2 - PRODUCTS

A. GENERAL
1. The Contractor shall provide all necessary labor, materials, and equipment for the installation and testing of fire-alarm equipment.
2. The Contractor shall provide written submittals to the Architect and the Owner as required.
3. The Contractor shall coordinate with the Architect and the Owner to ensure compliance with all applicable codes and standards.

B. FIRE-ALARM SYSTEMS
1. The Fire Alarm System shall be provided by the Contractor, performed under a Design-Build Delivery Method.
2. The Fire Alarm System shall be provided with automatic transfer to battery supply upon loss of normal AC power.
3. The Fire Alarm System shall be provided with audible appliances for notification.

C. INSTALLATION AND TESTING OF FIRE-ALARM EQUIPMENT
1. The Contractor shall provide submittals as required.
2. The Contractor shall conduct a final inspection and test of the Fire Alarm System.
3. The Contractor shall provide system manufacturers certification that all components have been provided under this section.

PART 3 - EXECUTION

A. GENERAL
1. The Contractor shall provide all necessary labor, materials, and equipment for the installation and testing of fire-alarm equipment.
2. The Contractor shall provide written submittals to the Architect and the Owner as required.
3. The Contractor shall coordinate with the Architect and the Owner to ensure compliance with all applicable codes and standards.

B. SYSTEM DESCRIPTION
1. The Fire Alarm System shall consist of all necessary components to detect and report building fires.
2. The Fire Alarm System shall be designed and installed in accordance with NFPA 72, National Fire Alarm Code.
3. The Fire Alarm System shall be provided with automatic transfer to battery supply upon loss of normal AC power.
4. The Fire Alarm System shall be provided with audible appliances for notification.

C. OPERATIONAL DESCRIPTION
1. The Fire Alarm System shall be provided with automatic transfer to battery supply upon loss of normal AC power.
2. The Fire Alarm System shall be provided with audible appliances for notification.
3. The Fire Alarm System shall be provided with automatic transfer to battery supply upon loss of normal AC power.
4. The Fire Alarm System shall be provided with audible appliances for notification.
600 VOLT FEEDER SCHEDULE - COPPER

ELECTRICAL SINGLE-LINE
WORK NOTES:

1. ROUTE NEW FEEDER FROM NEW ELECTRICAL ROOM TO EXISTING MAIN ELECTRICAL ROOM. REFER TO SINGLE LINE FOR ADDITIONAL INFORMATION. PROVIDE TRAFFIC RATED PULL BOX AS REQUIRED.

2. PROVIDE POWER TO MOTORIZED GATE. COORDINATE CONNECTION REQUIREMENTS AND LOCATION WITH OWNER PRIOR TO ROUGH IN.

3. PROVIDE RECEPTACLE FOR VEHICLE BLOCK HEATER.

4. CONNECT (3) #8 + (1) #10 GROUND IN 1"C TO GENERATOR AUXILIARY PANEL. COORDINATE EXACT REQUIREMENTS WITH EQUIPMENT MANUFACTURER PRIOR TO ROUGH IN.

5. ROUTE THRU TIMECLOCK 'TC-1'.

6. ENSURE FEEDER IS ROUTED DIRECTLY INTO ELECTRICAL ROOM FROM THE EXTERIOR, COORDINATE CONNECTION TO 'MDB' WITH OWNER TO MINIMIZE DOWNTIME.

7. ROUTE 3/4"C FOR GATE CONTROL WIRING FROM CONTROL PEDESTAL BACK TO IT ROOM 113. COORDINATE CONNECTION REQUIREMENTS AND LOCATION WITH OWNER PRIOR TO ROUGH IN.
WORK NOTES:
1. PROVIDE RECEPTACLE (TYP OF 7) FOR CONNECTION TO LIVING ROOM VACUUM AND WINDOW UNIT. VERIFY EXACT LOCATION AND MOUNTING HEIGHT WITH OWNER PRIOR TO ROUGH-IN.
2. PROVIDE RECEPTACLE TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.
3. PROVIDE POWER TO GARAGE DOOR OPERATOR. INSTALL PUSH BUTTON AND ASSOCIATED WIRING.
4. PROVIDE POWER TO LIGHTING CONTROLS. INSTALL LIGHTING CONTROLS AND ASSOCIATED WIRING.
5. PROVIDE POWER TO MOTORHEAD STORAGE SHELVES. COORDINATE POWER REQUIREMENTS WITH OWNER.
6. PROVIDE POWER TO A/V SCREEN. VERIFY EXACT LOCATION AND MOUNTING HEIGHT WITH OWNER PRIOR TO ROUGH-IN.
7. PROVIDE POWER TO GARAGE DOOR OPERATOR. INSTALL PUSH BUTTON AND ASSOCIATED WIRING.
8. PROVIDE POWER TO LOCAL LIGHTING CIRCUIT.
9. PROVIDE POWER AND CONTROL WIRING UP TO ASSOCIATED CONDENSING UNIT. SEE AND CONNECT PER MANUFACTURER'S RECOMMENDATION.
10. PROVIDE POWER TO SECURITY CONTROL PANEL.
11. PROVIDE POWER TO SECURITY CONTROL PANEL.
12. PROVIDE POWER TO SECURITY CONTROL PANEL.
13. PROVIDE POWER TO SECURITY CONTROL PANEL.
14. PROVIDE POWER TO SECURITY CONTROL PANEL.
15. PROVIDE POWER TO SECURITY CONTROL PANEL.
16. PROVIDE POWER TO SECURITY CONTROL PANEL.
17. PROVIDE POWER TO SECURITY CONTROL PANEL.
18. PROVIDE POWER TO SECURITY CONTROL PANEL.
19. PROVIDE POWER TO SECURITY CONTROL PANEL.
20. PROVIDE POWER TO SECURITY CONTROL PANEL.
21. PROVIDE POWER TO SECURITY CONTROL PANEL.
22. PROVIDE POWER TO SECURITY CONTROL PANEL.
23. PROVIDE POWER TO SECURITY CONTROL PANEL.
24. PROVIDE POWER TO SECURITY CONTROL PANEL.
25. PROVIDE POWER TO SECURITY CONTROL PANEL.
26. PROVIDE POWER TO SECURITY CONTROL PANEL.
27. PROVIDE POWER TO SECURITY CONTROL PANEL.
28. PROVIDE POWER TO SECURITY CONTROL PANEL.
29. PROVIDE POWER TO SECURITY CONTROL PANEL.
30. PROVIDE POWER TO SECURITY CONTROL PANEL.
31. PROVIDE POWER TO SECURITY CONTROL PANEL.
32. PROVIDE POWER TO SECURITY CONTROL PANEL.
33. PROVIDE POWER TO SECURITY CONTROL PANEL.
34. PROVIDE POWER TO SECURITY CONTROL PANEL.
35. PROVIDE POWER TO SECURITY CONTROL PANEL.
36. PROVIDE POWER TO SECURITY CONTROL PANEL.
37. PROVIDE POWER TO SECURITY CONTROL PANEL.
38. PROVIDE POWER TO SECURITY CONTROL PANEL.
39. PROVIDE POWER TO SECURITY CONTROL PANEL.
40. PROVIDE POWER TO SECURITY CONTROL PANEL.
41. PROVIDE POWER TO SECURITY CONTROL PANEL.
42. PROVIDE POWER TO SECURITY CONTROL PANEL.
43. PROVIDE POWER TO SECURITY CONTROL PANEL.
44. PROVIDE POWER TO SECURITY CONTROL PANEL.
45. PROVIDE POWER TO SECURITY CONTROL PANEL.
46. PROVIDE POWER TO SECURITY CONTROL PANEL.
47. PROVIDE POWER TO SECURITY CONTROL PANEL.
48. PROVIDE POWER TO SECURITY CONTROL PANEL.
49. PROVIDE POWER TO SECURITY CONTROL PANEL.
50. PROVIDE POWER TO SECURITY CONTROL PANEL.
51. PROVIDE POWER TO SECURITY CONTROL PANEL.
52. PROVIDE POWER TO SECURITY CONTROL PANEL.
WORK NOTES:
1. PROVIDE ALL VOLTAGE RATING PLACED ON PANEL BOX.
2. PROVIDE COMPLETE PANEL BOX WIRING DIAGRAM.
3. PROVIDE COMPLETE LIGHTING PLAN.
4. PROVIDE COMPLETE FIRE PROTECTION SYSTEMS.
5. PROVIDE COMPLETE SECURITY SYSTEMS.
6. ROUTE FIRETIME FROM TIMECLOCK TO G2CE.COM.
GENERAL NOTES:
1. THE FUSE SIZE NOTED AS TO BE PER MANUFACTURER RECOMMENDATION.

WORK NOTES:
1. ROUTE POWER AND CONTROL WIRING UP TO ASSOCIATED CONDENSING UNIT, SIZING AND CONNECT PER MANUFACTURER'S RECOMMENDATION.
2. ROUTE TO TIMECLOCK 'TC-1'.

ELECTRICAL - ROOF PLAN

SCALE: 1/8" = 1'-0"