Maintenance / Inspection Notes:
1. Routine preventative maintenance and inspections will be performed bi-weekly as well as after any precipitation or snowmelt event. At the time of inspection, the erosion control measures and all construction equipment located on-site will be inspected for leaks, spills, or damage and the site will be reviewed for unexpected soil erosion or sedimentation issues.
2. All necessary maintenance and repair activities will be completed immediately after discovering deficiencies in the system. Accumulated sediment shall be removed from the erosion control systems, or at any time sediment or debris adversely impacts the functionality of the system.
3. Storm drain inlet protection, straw wattles, and silt fence must be inspected as part of the regular inspections and repaired when necessary. Accumulated sediment shall be removed and properly disposed of.
4. The vehicle tracking control pad shall be maintained daily. Stone shall be added and repaired whenever required. Contractor will be required to sweep or vacuum any visible sediment that is tracked onto City streets.
5. Contractor will be required to sweep or vacuum any visible sediment that is tracked onto City streets.
6. Inspection of all erosion and sediment control BMP's shall be required at the end of each day's work, with necessary maintenance and repairs provided immediately.
7. Storm drain inlets shall be protected from the entry of sediment-laden water until final stabilization is complete.
8. Inspection of all erosion and sediment control BMP's shall be required at the end of each day's work, with necessary maintenance and repairs provided immediately.
9. Storm drain inlets shall be protected from the entry of sediment-laden water until final stabilization is complete.

This Erosion & Sediment Control Plan has been submitted to the City of Greeley in accordance with the City Criteria. Additional erosion and sediment control measures may be required if unforeseen environmental conditions are encountered. The requirements of this plan shall run with the land and be the obligation of the landowner until such time as the plan is properly completed, modified, or voided.

Note: This Erosion & Sediment Control Plan is in and of itself does not meet the requirements of the Colorado Department of Public Health: Stormwater Construction Permit for a Stormwater Management Plan (SWMP).

Accepted By: _______________________________
Landowner Date

Accepted By: _______________________________
Professional Engineer Date

Note: Erosion control measures shall remain in place until site has achieved final stabilization.
Hard Surface
or Public Road
VL Riprap (D50 = 6")
9" Minimum Thickness
Non-Woven Geotextile Filter Cloth
6"x6"x12' Timbers with 3" Gaps Between
Slope VTC Pad 5% into Trough for Wheel Washout
20' Wide Minimum
Excavated Sediment Basin
2X4 Nailed to Bottom
40' Long Minimum
Washout Timbers, See Profile
20' x 20' x 3' Deep Min
PIT EXCAVATED MATERIAL
CONTAINMENT BERM FROM
CONCRETE TRUCKS
WASHOUT HERE
ALL
Door & Hardware Schedule

<table>
<thead>
<tr>
<th>Door Type</th>
<th>Hardware Type</th>
<th>Specification</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A</td>
<td>Hinge</td>
<td>180°</td>
<td>Lobby</td>
</tr>
<tr>
<td>Type B</td>
<td>Deadbolt</td>
<td>1000N</td>
<td>Corridor</td>
</tr>
<tr>
<td>Type C</td>
<td>Lock</td>
<td>Key Similarity</td>
<td>Office</td>
</tr>
</tbody>
</table>

Frame Elevations

- Frame Type A: 100mm x 100mm
- Frame Type B: 150mm x 150mm

Legend

- Hinge: Metal Hinge, Color: Silver
- Deadbolt: Stainless Steel, Size: 30mm
- Lock: Brass Lock, Key: Key A

Additional notes on specific door hardware requirements based on architectural specifications.
GENERAL REQUIREMENTS

DEFERRED SUBMITTALS

SCHEDULE OF SPECIAL INSPECTIONS

CONCRETE REINFORCEMENT

A. SIMPSON "SET-XP" - ICC ESR 2508 FOR ANCHORAGE TO CONCRETE AND MASONRY AS APPLICABLE AND IN ACCORDANCE WITH CORRESPONDING REFERENCE STANDARD.

B. POWERS "WEDGE-BOLT" - ICC ESR-2526 FOR CONCRETE ONLY AND ICC ESR-1678 FOR MASONRY ONLY

CAST-IN-PLACE CONCRETE

SOILS AND FOUNDATIONS

POST-INSTALLED ANCHORS (INTO CONCRETE AND MASONRY)

COMPONENTS AND CLADDING PRESSURES (PSF)

DESIGN CRITERIA

STRUCTURAL DESIGN SOFTWARE

REFERENCES

STRUCTURAL GENERAL NOTES

CONCRETE REINFORCEMENT

DEFERRED SUBMITTALS

SCHEDULE OF SPECIAL INSPECTIONS

CONCRETE REINFORCEMENT

A. SIMPSON "SET-XP" - ICC ESR 2508 FOR ANCHORAGE TO CONCRETE AND MASONRY AS APPLICABLE AND IN ACCORDANCE WITH CORRESPONDING REFERENCE STANDARD.

B. POWERS "WEDGE-BOLT" - ICC ESR-2526 FOR CONCRETE ONLY AND ICC ESR-1678 FOR MASONRY ONLY

CAST-IN-PLACE CONCRETE

SOILS AND FOUNDATIONS

POST-INSTALLED ANCHORS (INTO CONCRETE AND MASONRY)

COMPONENTS AND CLADDING PRESSURES (PSF)

DESIGN CRITERIA

STRUCTURAL DESIGN SOFTWARE

REFERENCES

S001
BRICK VENEER

- Brick veneer anchors, ties, and connectors shall be as specified on structural drawings. Consult architectural drawings for masonry anchors and ties not included on the structural drawings.

- Brick veneer taller than 30'-0" in height with a spacing of 1" to 3" between the inside face of veneer and outside face of the wall.

- All components, including fasteners, shall be hot-dipped galvanized after fabrication conforming to ASTM A919 or equivalent.

CONCRETE IN-FILL WALLS

- Concrete in-fill walls shall be made of precast concrete units. Cross-walls shall be precast concrete units.

CHIMNEYS

- The design and construction of chimneys shall be in accordance with the International Building Code (IBC).

CONCRETE MASONRY ANCHORS AND TIES

- Masonry anchors and ties shall be of the approved type and size as specified on the structural drawings.

CONT. EDGE ANGLE

- Cont. edge angle shall be as specified on the structural drawings.

CONT. BRIDGING CHANNEL

- Cont. bridging channel shall be as specified on the structural drawings.

COLD-FORMED STEEL FRAMING NOTES

- Cold-formed steel framing shall be as specified in the steel stud/track manufacturer's literature. All cold-formed steel framing members shall be connected with cold-formed steel framing anchors and connectors as specified on the structural drawings.

MORTAR

- Mortar shall conform to ASTM C90 or equivalent.

GROUT

- Grout shall be provided at the time of masonry installation. Exterior grout lifts shall be provided at the joints of precast concrete units. Concrete in-fill walls shall be designed to allow for grouting of the wall cavity.

MASONRY UNITS

- Masonry units shall be certified by the manufacturer and provided at the time of masonry installation. Exterior masonry units shall be provided at the time of masonry installation.

REINFORCED UNIT MASOYRY

- Reinforced unit masonry shall be as specified on the structural drawings.

PRODUCT INFORMATION, ICC ESR REPORTS, AND MATERIAL CERTIFICATIONS CERTIFYING COMPLIANCE FOR ALL NON-PRECAST MATERIALS

- All non-precast materials shall be certified by the manufacturer and provided at the time of masonry installation.

COLD-FORMED STEEL FRAMING

- Cold-formed steel framing shall be as specified in the steel stud/track manufacturer's literature. All cold-formed steel framing members shall be connected with cold-formed steel framing anchors and connectors as specified on the structural drawings.

MORTAR

- Mortar shall conform to ASTM C90 or equivalent.

GROUT

- Grout shall be provided at the time of masonry installation. Exterior grout lifts shall be provided at the joints of precast concrete units. Concrete in-fill walls shall be designed to allow for grouting of the wall cavity.

MASONRY UNITS

- Masonry units shall be certified by the manufacturer and provided at the time of masonry installation. Exterior masonry units shall be provided at the time of masonry installation.

REINFORCED UNIT MASOYRY

- Reinforced unit masonry shall be as specified on the structural drawings.

PRODUCT INFORMATION, ICC ESR REPORTS, AND MATERIAL CERTIFICATIONS CERTIFYING COMPLIANCE FOR ALL NON-PRECAST MATERIALS

- All non-precast materials shall be certified by the manufacturer and provided at the time of masonry installation.

COLD-FORMED STEEL FRAMING

- Cold-formed steel framing shall be as specified in the steel stud/track manufacturer's literature. All cold-formed steel framing members shall be connected with cold-formed steel framing anchors and connectors as specified on the structural drawings.

MORTAR

- Mortar shall conform to ASTM C90 or equivalent.

GROUT

- Grout shall be provided at the time of masonry installation. Exterior grout lifts shall be provided at the joints of precast concrete units. Concrete in-fill walls shall be designed to allow for grouting of the wall cavity.

MASONRY UNITS

- Masonry units shall be certified by the manufacturer and provided at the time of masonry installation. Exterior masonry units shall be provided at the time of masonry installation.

REINFORCED UNIT MASOYRY

- Reinforced unit masonry shall be as specified on the structural drawings.

PRODUCT INFORMATION, ICC ESR REPORTS, AND MATERIAL CERTIFICATIONS CERTIFYING COMPLIANCE FOR ALL NON-PRECAST MATERIALS

- All non-precast materials shall be certified by the manufacturer and provided at the time of masonry installation.

COLD-FORMED STEEL FRAMING

- Cold-formed steel framing shall be as specified in the steel stud/track manufacturer's literature. All cold-formed steel framing members shall be connected with cold-formed steel framing anchors and connectors as specified on the structural drawings.

MORTAR

- Mortar shall conform to ASTM C90 or equivalent.

GROUT

- Grout shall be provided at the time of masonry installation. Exterior grout lifts shall be provided at the joints of precast concrete units. Concrete in-fill walls shall be designed to allow for grouting of the wall cavity.

MASONRY UNITS

- Masonry units shall be certified by the manufacturer and provided at the time of masonry installation. Exterior masonry units shall be provided at the time of masonry installation.

REINFORCED UNIT MASOYRY

- Reinforced unit masonry shall be as specified on the structural drawings.

PRODUCT INFORMATION, ICC ESR REPORTS, AND MATERIAL CERTIFICATIONS CERTIFYING COMPLIANCE FOR ALL NON-PRECAST MATERIALS

- All non-precast materials shall be certified by the manufacturer and provided at the time of masonry installation.
FOOTING PLAN

CONTINUOUS FOOTING SCHEDULE

| Bundle | Description | Overall | Top | Footing | Embedment
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3'-0" - 4'</td>
<td>12'-0"</td>
<td>2'-0"</td>
<td>12'-0"</td>
<td>4" - 8"</td>
</tr>
</tbody>
</table>

ISOLED FOOTING SCHEDULE

| Bundle | Description | Overall | Top | Footing | Embedment
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3'-0" - 4'</td>
<td>12'-0"</td>
<td>2'-0"</td>
<td>12'-0"</td>
<td>4" - 8"</td>
</tr>
</tbody>
</table>

GENERAL NOTES

1. Contractor shall assure proper concrete clearances around reinforcing steel per the structural design.
2. T.O.F. as indicated on the plans notes the top of the isolated concrete footing, not the embedment depth.
3. Specified reinforcing bars shall be equally spaced in the continuous footing.

MIN. REQUIREMENTS FOR ANCHOR BOLTS IN CONCRETE

BOLT DIAMETER: 5/8", 3/4", 7/8", 1".

SOILS PREPARATION AND SLAB BASE

1. 1" of clean, free draining gravel shall be placed beneath the slab base.
2. A 4" layer of clean, free draining gravel shall be placed beneath the slab base.
3. Organic materials should be removed from the proposed base plate area.

BASEPLATE REQUIREMENTS

- ALL MATERIALS MUST BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR INSTALLATION.
- BASEPLATES SHALL BE EMBEDDED IN CONCRETE TO MEET THE MANUFACTURER'S REQUIREMENTS.
- ALL INTERIOR PLANTS AND BUILDING ENVELOPE REQUIREMENTS. SEE SGN FOR ADDITIONAL INFORMATION REGARDING POST INSTALLATION.

MINIMUM REQUIREMENTS FOR ANCHOR BOLTS IN CONCRETE

BOLT DIAMETER: 5/8", 3/4", 7/8", 1".

COPYRIGHT © 2020, GALLOWAY. REPRODUCED WITHOUT THE WRITTEN CONSENT OF GALLOWAY WILL BE ENFORCED AND PROSECUTED.
CONTINUOUS FOOTING SCHEDULE

1. CONTRACTOR SHALL ASSEMBLE PROPER CONCRETE SLAB CONCRETE AROUND PERIMETER AREA FOR THE STRUCTURAL WALLS AND COLUMN AREAS, BUT THE ENDMEMBERS ARE ENTRY AND EXIT AREAS.
2. CONTRACTOR SHALL SECURE GRAB BARS ON THE PERIMETER OF THE BUILDING.
3. CONTRACTOR SHALL SECURE GRAB BARS ON THE TOP OF THE BUILDING REINFORCED CONCRETE WALLS.
4. CONTRACTOR SHALL SECURE GRAB BARS ON THE BOTTOM OF THE BUILDING REINFORCED CONCRETE WALLS.
5. CONTRACTOR SHALL SECURE GRAB BARS ON THE SIDE OF THE BUILDING REINFORCED CONCRETE WALLS.

ISOLATED FOOTING SCHEDULE

1. CONTRACTOR SHALL ASSEMBLE PROPER CONCRETE SLAB CONCRETE AROUND PERIMETER AREA FOR THE STRUCTURAL WALLS AND COLUMN AREAS, BUT THE ENDMEMBERS ARE ENTRY AND EXIT AREAS.
2. CONTRACTOR SHALL SECURE GRAB BARS ON THE PERIMETER OF THE BUILDING.
3. CONTRACTOR SHALL SECURE GRAB BARS ON THE TOP OF THE BUILDING REINFORCED CONCRETE WALLS.
4. CONTRACTOR SHALL SECURE GRAB BARS ON THE BOTTOM OF THE BUILDING REINFORCED CONCRETE WALLS.
5. CONTRACTOR SHALL SECURE GRAB BARS ON THE SIDE OF THE BUILDING REINFORCED CONCRETE WALLS.

CONCRETE CONTROL JOINT

SLABS, ETC.
SEEARCHITECTURALANDCIVILPLANSFORSLABDEPRESSIONS, STEPS, SLOPES, DRAINS, EXTERIOR TYPICAL CONCRETE FOOTING WIDTH SHALL BE 2' OCCURS.

FOUNDATION PLAN NOTES:

- OWNER SUPPLIED ITEMS
- CONCRETE CURBS
- BLOCKOUTS AND CHASES
- DRAINS, STEPS, AND SLOPES
- DOOR OPENINGS
- VERTICALS
- WALLS AND PARTITIONS
- PARTIAL HEIGHT MASONRY CONTROL JOINT
- FULL HEIGHT MASONRY CONTROL JOINT (VERIFY LOCATIONS WITH ARCH)
- CONCRETE CONTROL JOINT
- SLOPE DIRECTION
- 8" MASONRY WALL WITH #5 VERTICAL REINFORCING AT 48" O.C. MAX, U.N.O.
- STEP IN FOUNDATION
- COLUMN PLATE MARK
- DIMENSION TO FOUNDATION EDGE OR GRIDLINE
- STEEL COLUMN
- TOP OF FOOTING
- BOTTOM OF FOUNDATION
- FOOTING MARK. REF TO FOOTING SCHEDULE
- TOP OF SLAB
- BOTTOM OF SLAB
- TRANSVERSE
- CONTINUOUS FOOTING SCHEDULE
- ISOLATED FOOTING SCHEDULE
- GENERAL NOTES

FOUNDATION PLAN

Scale: 1/8" = 1'-0"
SLAB DIMENSION PLAN

SLAB DIMENSION PLAN

SLAB DIMENSION PLAN
<table>
<thead>
<tr>
<th>No.</th>
<th>Diameter (")</th>
<th>f'c = 3,000 PSI</th>
<th>f'c = 4,000 PSI</th>
<th>f'c = 5,000 PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.375</td>
<td>9</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>0.500</td>
<td>12</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>0.625</td>
<td>14</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>0.750</td>
<td>17</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>0.875</td>
<td>20</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>1.000</td>
<td>22</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>1.128</td>
<td>25</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>1.375</td>
<td>28</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>11</td>
<td>1.500</td>
<td>31</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>12</td>
<td>1.625</td>
<td>34</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>13</td>
<td>1.750</td>
<td>36</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>14</td>
<td>1.875</td>
<td>39</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>15</td>
<td>2.000</td>
<td>43</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>16</td>
<td>2.125</td>
<td>48</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>17</td>
<td>2.250</td>
<td>54</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>18</td>
<td>2.375</td>
<td>58</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>19</td>
<td>2.500</td>
<td>63</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>20</td>
<td>2.625</td>
<td>72</td>
<td>69</td>
<td>69</td>
</tr>
<tr>
<td>21</td>
<td>2.750</td>
<td>78</td>
<td>75</td>
<td>75</td>
</tr>
</tbody>
</table>

Notes:
1. All dimensions shown are in inches.
2. If bar is confined by ties per Table 25.4.9.3 of ACI 318-14, multiply lap length by 0.75.
3. If concrete is lightweight, multiply lap length by 0.75.
4. If bar is epoxy coated, multiply lap length by 1.5.
5. If concrete is lightweight, multiply lap length by 0.75.
1. LEDGER ATTACHMENT PER PLAN

NOTE: USE PARTIAL DEPTH STIFFENER PLATE 3/8" UNO AS PER AISC SPECIFICATIONS. SIZES, PER AISC SPECIFICATIONS TABLES.

HOLE DIAMETERS LESS THAN 3/16" MIN SHOULD BE WELDED TO SHEAR PLANE. AISC RECOMMENDS 1/2" CLR.

BOLTS UNLESS NOTED FROM SHEAR PLANE). ALL CONNECTIONS PER AISC SPECIFICATIONS EDGE DISTANCES, HOLE DIAMETERS, THICKNESS, 1/4" MIN.

EDGE DISTANCE, HOLE DIAMETERS, THICKNESS, 1/4" MIN.

NOTE: USE PARTIAL DEPTH STIFFENER PLATE 3/8" UNO AS PER AISC SPECIFICATIONS. SIZES, PER AISC SPECIFICATIONS TABLES.

HOLE DIAMETERS LESS THAN 3/16" MIN SHOULD BE WELDED TO SHEAR PLANE. AISC RECOMMENDS 1/2" CLR.

BOLTS UNLESS NOTED FROM SHEAR PLANE). ALL CONNECTIONS PER AISC SPECIFICATIONS EDGE DISTANCES, HOLE DIAMETERS, THICKNESS, 1/4" MIN.

NOTE: USE PARTIAL DEPTH STIFFENER PLATE 3/8" UNO AS PER AISC SPECIFICATIONS. SIZES, PER AISC SPECIFICATIONS TABLES.

HOLE DIAMETERS LESS THAN 3/16" MIN SHOULD BE WELDED TO SHEAR PLANE. AISC RECOMMENDS 1/2" CLR.

BOLTS UNLESS NOTED FROM SHEAR PLANE). ALL CONNECTIONS PER AISC SPECIFICATIONS EDGE DISTANCES, HOLE DIAMETERS, THICKNESS, 1/4" MIN.

NOTE: USE PARTIAL DEPTH STIFFENER PLATE 3/8" UNO AS PER AISC SPECIFICATIONS. SIZES, PER AISC SPECIFICATIONS TABLES.

HOLE DIAMETERS LESS THAN 3/16" MIN SHOULD BE WELDED TO SHEAR PLANE. AISC RECOMMENDS 1/2" CLR.

BOLTS UNLESS NOTED FROM SHEAR PLANE). ALL CONNECTIONS PER AISC SPECIFICATIONS EDGE DISTANCES, HOLE DIAMETERS, THICKNESS, 1/4" MIN.

NOTE: USE PARTIAL DEPTH STIFFENER PLATE 3/8" UNO AS PER AISC SPECIFICATIONS. SIZES, PER AISC SPECIFICATIONS TABLES.

HOLE DIAMETERS LESS THAN 3/16" MIN SHOULD BE WELDED TO SHEAR PLANE. AISC RECOMMENDS 1/2" CLR.

BOLTS UNLESS NOTED FROM SHEAR PLANE). ALL CONNECTIONS PER AISC SPECIFICATIONS EDGE DISTANCES, HOLE DIAMETERS, THICKNESS, 1/4" MIN.

NOTE: USE PARTIAL DEPTH STIFFENER PLATE 3/8" UNO AS PER AISC SPECIFICATIONS. SIZES, PER AISC SPECIFICATIONS TABLES.

HOLE DIAMETERS LESS THAN 3/16" MIN SHOULD BE WELDED TO SHEAR PLANE. AISC RECOMMENDS 1/2" CLR.

BOLTS UNLESS NOTED FROM SHEAR PLANE). ALL CONNECTIONS PER AISC SPECIFICATIONS EDGE DISTANCES, HOLE DIAMETERS, THICKNESS, 1/4" MIN.

NOTE: USE PARTIAL DEPTH STIFFENER PLATE 3/8" UNO AS PER AISC SPECIFICATIONS. SIZES, PER AISC SPECIFICATIONS TABLES.

HOLE DIAMETERS LESS THAN 3/16" MIN SHOULD BE WELDED TO SHEAR PLANE. AISC RECOMMENDS 1/2" CLR.

BOLTS UNLESS NOTED FROM SHEAR PLANE). ALL CONNECTIONS PER AISC SPECIFICATIONS EDGE DISTANCES, HOLE DIAMETERS, THICKNESS, 1/4" MIN.

NOTE: USE PARTIAL DEPTH STIFFENER PLATE 3/8" UNO AS PER AISC SPECIFICATIONS. SIZES, PER AISC SPECIFICATIONS TABLES.
Mechanical Schedules

Roof Top Package Unit Schedule

FAN SCHEDULE

<table>
<thead>
<tr>
<th>FAN</th>
<th>MAKE</th>
<th>MODEL</th>
<th>LOCATION</th>
<th>RPM</th>
<th>HP</th>
<th>VOLTAGE</th>
<th>VFD</th>
<th>MOTOR DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GF 1</td>
<td>COOK</td>
<td>GG-129</td>
<td>UNIT A</td>
<td>1070</td>
<td>5</td>
<td>2071</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>GF 2</td>
<td>COOK</td>
<td>GG-129</td>
<td>UNIT B</td>
<td>1070</td>
<td>5</td>
<td>2071</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>GF 3</td>
<td>COOK</td>
<td>GG-129</td>
<td>UNIT C</td>
<td>1070</td>
<td>5</td>
<td>2071</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>GF 4</td>
<td>COOK</td>
<td>GG-129</td>
<td>UNIT D</td>
<td>1070</td>
<td>5</td>
<td>2071</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>GF 5</td>
<td>COOK</td>
<td>GG-129</td>
<td>UNIT E</td>
<td>1070</td>
<td>5</td>
<td>2071</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>GF 6</td>
<td>COOK</td>
<td>GG-129</td>
<td>UNIT F</td>
<td>1070</td>
<td>5</td>
<td>2071</td>
<td>5</td>
<td>20</td>
</tr>
</tbody>
</table>

ACCESSORIES
- 1. Fan control
- 2. Disconnect switch
- 3. 20 Amp fuse

ELECTRIC HEATER SCHEDULE

<table>
<thead>
<tr>
<th>HEATER</th>
<th>AMPERAGE</th>
<th>MAXIMUM</th>
<th>MINIMUM</th>
<th>VOLTAGE</th>
<th>POWER</th>
<th>RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHV-1</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>220</td>
<td>5</td>
<td>1.32</td>
</tr>
<tr>
<td>EHV-2</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>220</td>
<td>5</td>
<td>1.32</td>
</tr>
</tbody>
</table>

SINGLE DUCT VARIABLE AIR VOLUME BOX SCHEDULE

<table>
<thead>
<tr>
<th>MFR</th>
<th>MODEL</th>
<th>INLET SIZE</th>
<th>OM-CONTR.</th>
<th>AIR P.O.</th>
<th>OM-COIL</th>
<th>OM-HEATING</th>
<th>COIL-HVAC</th>
<th>ELECTRIC HEATING</th>
<th>ELECTRIC</th>
<th>ACCESSORIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITUS</td>
<td>EDSY</td>
<td>8"</td>
<td>45.350</td>
<td>0.1</td>
<td>50</td>
<td>175</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>RE-FLUSH (2/4)</td>
</tr>
<tr>
<td>TITUS</td>
<td>EDSY</td>
<td>8"</td>
<td>45.350</td>
<td>0.1</td>
<td>50</td>
<td>175</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>RE-FLUSH (2/4)</td>
</tr>
<tr>
<td>TITUS</td>
<td>EDSY</td>
<td>10"</td>
<td>110.100</td>
<td>0.21</td>
<td>175</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>RE-FLUSH (2/4)</td>
</tr>
<tr>
<td>TITUS</td>
<td>EDSY</td>
<td>14"</td>
<td>350.250</td>
<td>0.27</td>
<td>175</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>RE-FLUSH (2/4)</td>
</tr>
<tr>
<td>TITUS</td>
<td>EDSY</td>
<td>16"</td>
<td>350.250</td>
<td>0.31</td>
<td>175</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>RE-FLUSH (2/4)</td>
</tr>
</tbody>
</table>

NOTES
- 1. 24 VOLT STEP DOWN TRANSFORMER
- 2. SINGLE PORT ELECTRICAL CONNECTION
- 3. AIR FLOW SWITCH
- 4. ERGO. VENTILATION, ELECTRIC HEATING SCHEDULE FOR NO HEAT TURBINE
NOTES:
1. PROVIDE STRAIGHT DUCT OF STANDARD INLET SIZE FOR A MINIMUM OF THREE TIMES THE DUCT DIAMETER AND A MAXIMUM LENGTH OF 120".
2. FLEX DUCT AT INLET CONNECTION IS NOT ACCEPTABLE.
3. PROVIDE STRAIGHT DUCT OF INCREASED INLET DUCT SIZE FOR LENGTHS OVER 120".
4. PROVIDE 45° ENTRY OR 45° LEAD IN AT EACH CONNECTION TO RECTANGULAR MEDIUM PRESSURE DUCTWORK PER SMACNA (3RD EDITION) FIGURE 4-6.
5. PROVIDE CONICAL SADDLE TAP OR TEE AT EACH CONNECTION TO ROUND OR OVAL MEDIUM PRESSURE DUCTWORK PER SMACNA (3RD EDITION) FIGURE 3-6.
6. PROVIDE STRAIGHT DUCT OF STANDARD INLET SIZE FOR THREE TIMES THE DUCT DIAMETER OR A MINIMUM OF 24".

VAV TERMINAL UNIT INLET CONDITIONS

VAV TERMINAL UNIT WITH ELECTRIC REHEAT COIL
WATERTIGHT GASKET
ALL AROUND
UNIT CASING
COUNTERFLASHING
WITH DRIP
FACTORY SUPPLIED
ROOF CURB WITH FIELD
SUPPLIED RIGID
INSULATION
PRESSURE TREATED
CANT STRIP ALL AROUND
ROOF INSULATION
ROOFING FELT
ROOF STRUCTURE
HARDWOOD OR STEEL
SHIMS BETWEEN ROOF
DECKING AND SUPPORT
STRUCTURE
WOOD NAILER (SUPPLIED
WITH CURB)
ROOF INSULATION
2 LAYERS 5/8" GYP. BOARD

NOTES:
1. ROOFING MEMBRANE TO BE FLASHED WATERTIGHT TO THE CURB (BY
GENERAL CONTRACTOR).
2. CUTTING OF THE ROOF ASSEMBLY TO ACCOMMODATE DUCT
PENETRATIONS SHALL BE THE RESPONSIBILITY OF THE GENERAL
CONTRACTOR.
3. SEAL ALL AROUND BETWEEN DUCT(S) AND GYPSUM BOARD WITH AN
APPROVED ACOUSTIC SEALANT (BY GENERAL CONTRACTOR).
4. SEAL AROUND FULL PERIMETER OF CURB / GYPSUM BOARD INTERFACE
WITH AN APPROVED ACOUSTIC SEALANT (BY GENERAL CONTRACTOR).

RTU ROOF CURB
PITCH TO OUTSIDE
ACCESS DOOR HALF HEIGHT OF
DUCT, 12"x12" MINIMUM (UNLESS
OTHERWISE SHOWN ON PLANS)
INSULATE ALL EXPOSED PARTS
OF LOUVERPLENUM WITH 2"
RIGID BOARD INSULATION IF
ASSOCIATED DUCTWORK IS
INSULATED
CAULK ALL AROUND
LOUVER (PROVIDED
BY ARCH)
1/2" BIRDSCREEN
SEAL AND CAULK ALL AROUND
LOUVER CONNECTION

NOTES:
1. MAN BARS IN STEEL BAR OR ANGLE FRAME SCREWED
TO THE WALL FRAMING AT DUCT OPENING.
2. MAN BARS REQUIRED FOR DUCT OPENINGS GREATER
THAN 96 SQ. INCHES, UNLESS ONE DIMENSION IS LESS
THAN 6 INCHES, THAT PENETRATE PARTITION TYPES A2,
A3, A6, A6A, A6B, A7, 8, 9, ROOF PENETRATIONS, AND
EXTERIOR WALL PENETRATIONS.
3. IF CODE REQUIRES THE INSTALLATION OF A FIRE
DAMPER, INTEGRITY OF MAN BARS SHALL BE
MAINTAINED.
4. MAN BARS REQUIRED FOR DUCT OPENINGS GREATER
THAN 96 SQ. INCHES THAT PENETRATE PARTITION TYPE
A5, IN FIELD OFFICES ONLY, IF ROOM HAS KEY PAD OR
HIGH SECURITY LOCK (X-10 OR S&G).

SHEET METAL DUCT
FILLET WELD STEEL RODS
AT INTERSECTIONS AND
WHERE THEY MEET
FRAME
1/4" x 1/4" STEEL BAR OR
ANGLE FRAME (SIZED TO
FIT INSIDE SHEET METAL
DUCT)
12" DIA. SMOOTH STEEL
RODS @ 6" O.C. EACH WAY
16 GA. METAL STUD
FRAMING SURROUND AT
DUCT OPENING (ALL SIDES)
STEEL SCREWS (TACK WELD
SCREW HEADS TO FRAME AFTER
INSTALLATION OF MAN BARS IN
DUCTWORK.

ACCESS HATCH
SECURE SIDE
NON-SECURE SIDE

NOTES:
DUCTS OVER 96 SQ. INCHES THAT PENETRATE THE
PERIMETER WALL MUST HAVE
1/2" MAN BARS INSTALLED
AT THE POINT OF ENTRY. MAN BARS SHALL BE SPACED
AND WELDED AT 6" O.C.C EACH WAY (SEE MAN BAR
DETAIL). DUCTS WITH ANY DIMENSIONS LESS THAN 6" DO
NOT REQUIRE MAN BARS. A 12"x12" INSPECTION PORT
AND ACCESS HATCH MUST BE INSTALLED ON THE
SECURE SIDE OF THE PARTITION. ENSURE ACCESS
HATCH OPENS A MINIMUM OF 90 DEGREES AND IS NOT
OBSTRUCTED. COORDINATE LOCATION WITH CEILING
GRID, LIGHTS, PIPES, CONDUITS, AND OTHER DUCTS,
ETC.

MAN BAR SECTION
N.T.S. 2 SE E-4
RTU ROOF CURB
N.T.S. 2 SE E-4
MECHANICAL DUCT SYSTEM NOTES

5. GENERAL

5.1. PROJECT SPECIFICATIONS

5.1.1. All projects shall comply with the specifications set forth herein. All projects shall be in accordance with the Contract Documents, the AIA Contract, the NEC, and local codes.

5.1.2. The mechanical contractor shall be responsible for the design and installation of the mechanical system. The mechanical contractor shall furnish and install all necessary materials and equipment to meet the specifications set forth herein.

5.1.3. The mechanical contractor shall comply with all local codes and regulations. The mechanical contractor shall be responsible for obtaining all necessary permits and approvals.

5.1.4. The mechanical contractor shall be responsible for the coordination of all trades and the scheduling of all work.

5.1.5. The mechanical contractor shall be responsible for the installation of all necessary¥ equipment and materials.

5.1.6. The mechanical contractor shall be responsible for the operation and maintenance of the mechanical system.

5.2. INSULATION

5.2.1. All ducts shall be insulated with a minimum R-value of 3.5.

5.2.2. The mechanical contractor shall specify and install all necessary¥ insulation materials.

5.2.3. The mechanical contractor shall ensure that all insulation materials are properly installed and covered.

5.3. DUCT WORK

5.3.1. All ducts shall be sized according to the National Fire Protection Association (NFPA) 90A Standard.

5.3.2. The mechanical contractor shall be responsible for the design and installation of all ductwork.

5.3.3. The mechanical contractor shall ensure that all ductwork is properly supported and braced.

5.3.4. The mechanical contractor shall be responsible for the installation of all necessary¥ duct accessories.

5.3.5. The mechanical contractor shall be responsible for the operation and maintenance of the mechanical system.

5.4. CONSTRUCTION

5.4.1. The mechanical contractor shall be responsible for the coordination of all trades and the scheduling of all work.

5.4.2. The mechanical contractor shall be responsible for the installation of all necessary¥ equipment and materials.

5.4.3. The mechanical contractor shall be responsible for the operation and maintenance of the mechanical system.

5.5. WARRANTIES

5.5.1. The mechanical contractor shall furnish a warranty for the mechanical system.

5.5.2. The mechanical contractor shall specify and install all necessary¥ insulation materials.

5.5.3. The mechanical contractor shall ensure that all insulation materials are properly installed and covered.

5.5.4. The mechanical contractor shall be responsible for the installation of all necessary¥ duct accessories.

5.5.5. The mechanical contractor shall be responsible for the operation and maintenance of the mechanical system.

MECHANICAL SPECIFICATIONS

5.1. PROJECT SPECIFICATIONS

5.1.1. All projects shall comply with the specifications set forth herein. All projects shall be in accordance with the Contract Documents, the AIA Contract, the NEC, and local codes.

5.1.2. The mechanical contractor shall be responsible for the design and installation of the mechanical system. The mechanical contractor shall furnish and install all necessary materials and equipment to meet the specifications set forth herein.

5.1.3. The mechanical contractor shall comply with all local codes and regulations. The mechanical contractor shall be responsible for obtaining all necessary permits and approvals.

5.1.4. The mechanical contractor shall be responsible for the coordination of all trades and the scheduling of all work.

5.1.5. The mechanical contractor shall be responsible for the installation of all necessary¥ equipment and materials.

5.1.6. The mechanical contractor shall be responsible for the operation and maintenance of the mechanical system.

5.2. INSULATION

5.2.1. All ducts shall be insulated with a minimum R-value of 3.5.

5.2.2. The mechanical contractor shall specify and install all necessary¥ insulation materials.

5.2.3. The mechanical contractor shall ensure that all insulation materials are properly installed and covered.

5.2.4. The mechanical contractor shall be responsible for the installation of all necessary¥ duct accessories.

5.2.5. The mechanical contractor shall be responsible for the operation and maintenance of the mechanical system.

5.3. DUCT WORK

5.3.1. All ducts shall be sized according to the National Fire Protection Association (NFPA) 90A Standard.

5.3.2. The mechanical contractor shall be responsible for the design and installation of all ductwork.

5.3.3. The mechanical contractor shall ensure that all ductwork is properly supported and braced.

5.3.4. The mechanical contractor shall be responsible for the installation of all necessary¥ duct accessories.

5.3.5. The mechanical contractor shall be responsible for the operation and maintenance of the mechanical system.

5.4. CONSTRUCTION

5.4.1. The mechanical contractor shall be responsible for the coordination of all trades and the scheduling of all work.

5.4.2. The mechanical contractor shall be responsible for the installation of all necessary¥ equipment and materials.

5.4.3. The mechanical contractor shall be responsible for the operation and maintenance of the mechanical system.

5.5. WARRANTIES

5.5.1. The mechanical contractor shall furnish a warranty for the mechanical system.

5.5.2. The mechanical contractor shall specify and install all necessary¥ insulation materials.

5.5.3. The mechanical contractor shall ensure that all insulation materials are properly installed and covered.

5.5.4. The mechanical contractor shall be responsible for the installation of all necessary¥ duct accessories.

5.5.5. The mechanical contractor shall be responsible for the operation and maintenance of the mechanical system.

5.6. CODERCTORAL INSURANCE

5.6.1. The mechanical contractor shall provide and maintain all necessary¥ insurance coverage as required by law.

5.6.2. The mechanical contractor shall be responsible for obtaining all necessary permits and approvals.

5.6.3. The mechanical contractor shall be responsible for the coordination of all trades and the scheduling of all work.

5.6.4. The mechanical contractor shall be responsible for the installation of all necessary¥ equipment and materials.

5.6.5. The mechanical contractor shall be responsible for the operation and maintenance of the mechanical system.
WORK NOTES:

1. DOMESTIC HOT WATER CONCENTRIC VENT TERMINATION.
2. UNIT HEATER CONCENTRIC VENT TERMINATION.
3. PROVIDE GOOSENECK TERMINATION - TYPICAL.

SCALE:
ROOF PLAN - MECHANICAL
1/8" = 1'-0"
PLUMBING GENERAL NOTES
1. DRAWINGS AND SPECIFICATIONS ARE COMPLIMENTARY. WHEREAS THE DRAWINGS PREVAIL WHERE THE DRAWINGS SPECIFIC.
2. THE EQUIPMENT SPECIFIED IN THE DRAWINGS HAS BEEN SELECTED TO SATISFY THE REQUIREMENTS OF THE PROJECT. THE USE OF EQUIPMENT OF SIMILAR RATING MAY BE INTERCHANGABLE WITH EQUIPMENT SPECIFIED.
3. ALL WORK IS TO BE CONFORM TO APPLICABLE BUILDING CODES, FIRE CODES, AND ALL AUTHORITIES HAVING JURISDICTION.
4. DRAWINGS ARE DIAGRAMMATIC AND SHOW THE GENERAL DESIGN INTENT, ARRANGEMENT, AND GENERAL EXTENT OF SYSTEMS. EXCEPT AS SHOWN ON STRIPED PIPING, ANY EQUIPMENT NOT SHOWING SPECIFICATIONS AND TRANSITION ARE TO BE CONFORM TO THE REQUIREMENTS OF THE PROJECT.
5. CONTRACTOR SHALL BE RESPONSIBLE FOR LOCATING AND INSTALLING BUILDING SYSTEMS. CONTRACTOR SHALL PROVIDE SUPPORT AS REQUIRED FOR THE FUNCTIONALITY OF SYSTEMS.
6. CONTRACTOR SHALL PRODUCE A SET OF CONSTRUCTION DRAWINGS SHOWING EXISTING SYSTEMS PRIOR TO SUBMITTING FINAL BIDS, FABRICATION, OR CONSTRUCTION.
7. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE REPAIR AND PATCHING OF DAMAGED ARCHITECTURAL COMPONENTS TO THE EQUIPMENT'S MANUFACTURER'S WRITTEN INSTALLATION INSTRUCTIONS.
8. THE CONTRACTOR SHALL PROVIDE FIELD COORDINATION OF ALL OTHER TRADES. COORDINATE WITH GENERAL CONTRACTOR AND STRUCTURAL ENGINEER AS REQUIRED.
9. THIS SCOPE OF WORK AND/OR CORE DRILL REQUIREMENTS. COORDINATE WITH GENERAL CONTRACTOR AND STRUCTURAL ENGINEER AS REQUIRED.
10. THE EQUIPMENT SPECIFIED ON THE DRAWINGS HAVE BEEN SELECTED AS THE BASIS OF DESIGN. THE USE OF EQUIPMENT OF SIMILAR RATING MAY BE INTERCHANGABLE WITH EQUIPMENT SPECIFIED.
11. THE USE OF EQUIPMENT OF SIMILAR RATING MAY BE INTERCHANGABLE WITH EQUIPMENT SPECIFIED.
12. THE EQUIPMENT SPECIFIED ON THE DRAWINGS HAVE BEEN SELECTED AS THE BASIS OF DESIGN. THE USE OF EQUIPMENT OF SIMILAR RATING MAY BE INTERCHANGABLE WITH EQUIPMENT SPECIFIED.
13. THE EQUIPMENT SPECIFIED ON THE DRAWINGS HAVE BEEN SELECTED AS THE BASIS OF DESIGN. THE USE OF EQUIPMENT OF SIMILAR RATING MAY BE INTERCHANGABLE WITH EQUIPMENT SPECIFIED.
14. THE EQUIPMENT SPECIFIED ON THE DRAWINGS HAVE BEEN SELECTED AS THE BASIS OF DESIGN. THE USE OF EQUIPMENT OF SIMILAR RATING MAY BE INTERCHANGABLE WITH EQUIPMENT SPECIFIED.
15. THE EQUIPMENT SPECIFIED ON THE DRAWINGS HAVE BEEN SELECTED AS THE BASIS OF DESIGN. THE USE OF EQUIPMENT OF SIMILAR RATING MAY BE INTERCHANGABLE WITH EQUIPMENT SPECIFIED.
16. THE EQUIPMENT SPECIFIED ON THE DRAWINGS HAVE BEEN SELECTED AS THE BASIS OF DESIGN. THE USE OF EQUIPMENT OF SIMILAR RATING MAY BE INTERCHANGABLE WITH EQUIPMENT SPECIFIED.
17. THE EQUIPMENT SPECIFIED ON THE DRAWINGS HAVE BEEN SELECTED AS THE BASIS OF DESIGN. THE USE OF EQUIPMENT OF SIMILAR RATING MAY BE INTERCHANGABLE WITH EQUIPMENT SPECIFIED.
18. THE EQUIPMENT SPECIFIED ON THE DRAWINGS HAVE BEEN SELECTED AS THE BASIS OF DESIGN. THE USE OF EQUIPMENT OF SIMILAR RATING MAY BE INTERCHANGABLE WITH EQUIPMENT SPECIFIED.
19. THE EQUIPMENT SPECIFIED ON THE DRAWINGS HAVE BEEN SELECTED AS THE BASIS OF DESIGN. THE USE OF EQUIPMENT OF SIMILAR RATING MAY BE INTERCHANGABLE WITH EQUIPMENT SPECIFIED.
20. THE EQUIPMENT SPECIFIED ON THE DRAWINGS HAVE BEEN SELECTED AS THE BASIS OF DESIGN. THE USE OF EQUIPMENT OF SIMILAR RATING MAY BE INTERCHANGABLE WITH EQUIPMENT SPECIFIED.

PLUMBING LEGEND

PLUMBING DRAWING INDEX

PIPING SYSTEM NOTES
1. ALL WORK IS TO BE PERFORMED BY CONTRACTOR AND CHECKED PER CONTRACTOR'S AND ENGINEER’S STANDARDS. WORK PERFORMED BY CONTRACTOR IS TO BE PERFORMED IN ACCORDANCE WITH THE CONTRACTOR'S AND ENGINEER’S STANDARDS.
2. ALL WORK IS TO BE PERFORMED BY CONTRACTOR AND CHECKED PER CONTRACTOR'S AND ENGINEER’S STANDARDS. WORK PERFORMED BY CONTRACTOR IS TO BE PERFORMED IN ACCORDANCE WITH THE CONTRACTOR'S AND ENGINEER’S STANDARDS.
3. ALL WORK IS TO BE PERFORMED BY CONTRACTOR AND CHECKED PER CONTRACTOR'S AND ENGINEER’S STANDARDS. WORK PERFORMED BY CONTRACTOR IS TO BE PERFORMED IN ACCORDANCE WITH THE CONTRACTOR'S AND ENGINEER’S STANDARDS.
4. ALL WORK IS TO BE PERFORMED BY CONTRACTOR AND CHECKED PER CONTRACTOR'S AND ENGINEER’S STANDARDS. WORK PERFORMED BY CONTRACTOR IS TO BE PERFORMED IN ACCORDANCE WITH THE CONTRACTOR'S AND ENGINEER’S STANDARDS.
5. ALL WORK IS TO BE PERFORMED BY CONTRACTOR AND CHECKED PER CONTRACTOR'S AND ENGINEER’S STANDARDS. WORK PERFORMED BY CONTRACTOR IS TO BE PERFORMED IN ACCORDANCE WITH THE CONTRACTOR'S AND ENGINEER’S STANDARDS.
6. ALL WORK IS TO BE PERFORMED BY CONTRACTOR AND CHECKED PER CONTRACTOR'S AND ENGINEER’S STANDARDS. WORK PERFORMED BY CONTRACTOR IS TO BE PERFORMED IN ACCORDANCE WITH THE CONTRACTOR'S AND ENGINEER’S STANDARDS.
7. ALL WORK IS TO BE PERFORMED BY CONTRACTOR AND CHECKED PER CONTRACTOR'S AND ENGINEER’S STANDARDS. WORK PERFORMED BY CONTRACTOR IS TO BE PERFORMED IN ACCORDANCE WITH THE CONTRACTOR'S AND ENGINEER’S STANDARDS.
8. ALL WORK IS TO BE PERFORMED BY CONTRACTOR AND CHECKED PER CONTRACTOR'S AND ENGINEER’S STANDARDS. WORK PERFORMED BY CONTRACTOR IS TO BE PERFORMED IN ACCORDANCE WITH THE CONTRACTOR'S AND ENGINEER’S STANDARDS.
9. ALL WORK IS TO BE PERFORMED BY CONTRACTOR AND CHECKED PER CONTRACTOR'S AND ENGINEER’S STANDARDS. WORK PERFORMED BY CONTRACTOR IS TO BE PERFORMED IN ACCORDANCE WITH THE CONTRACTOR'S AND ENGINEER’S STANDARDS.
10. ALL WORK IS TO BE PERFORMED BY CONTRACTOR AND CHECKED PER CONTRACTOR'S AND ENGINEER’S STANDARDS. WORK PERFORMED BY CONTRACTOR IS TO BE PERFORMED IN ACCORDANCE WITH THE CONTRACTOR'S AND ENGINEER’S STANDARDS.
11. ALL WORK IS TO BE PERFORMED BY CONTRACTOR AND CHECKED PER CONTRACTOR'S AND ENGINEER’S STANDARDS. WORK PERFORMED BY CONTRACTOR IS TO BE PERFORMED IN ACCORDANCE WITH THE CONTRACTOR'S AND ENGINEER’S STANDARDS.
12. ALL WORK IS TO BE PERFORMED BY CONTRACTOR AND CHECKED PER CONTRACTOR'S AND ENGINEER’S STANDARDS. WORK PERFORMED BY CONTRACTOR IS TO BE PERFORMED IN ACCORDANCE WITH THE CONTRACTOR'S AND ENGINEER’S STANDARDS.
13. ALL WORK IS TO BE PERFORMED BY CONTRACTOR AND CHECKED PER CONTRACTOR'S AND ENGINEER’S STANDARDS. WORK PERFORMED BY CONTRACTOR IS TO BE PERFORMED IN ACCORDANCE WITH THE CONTRACTOR'S AND ENGINEER’S STANDARDS.
14. ALL WORK IS TO BE PERFORMED BY CONTRACTOR AND CHECKED PER CONTRACTOR'S AND ENGINEER’S STANDARDS. WORK PERFORMED BY CONTRACTOR IS TO BE PERFORMED IN ACCORDANCE WITH THE CONTRACTOR'S AND ENGINEER’S STANDARDS.
15. ALL WORK IS TO BE PERFORMED BY CONTRACTOR AND CHECKED PER CONTRACTOR'S AND ENGINEER’S STANDARDS. WORK PERFORMED BY CONTRACTOR IS TO BE PERFORMED IN ACCORDANCE WITH THE CONTRACTOR'S AND ENGINEER’S STANDARDS.
16. ALL WORK IS TO BE PERFORMED BY CONTRACTOR AND CHECKED PER CONTRACTOR'S AND ENGINEER’S STANDARDS. WORK PERFORMED BY CONTRACTOR IS TO BE PERFORMED IN ACCORDANCE WITH THE CONTRACTOR'S AND ENGINEER’S STANDARDS.
17. ALL WORK IS TO BE PERFORMED BY CONTRACTOR AND CHECKED PER CONTRACTOR'S AND ENGINEER’S STANDARDS. WORK PERFORMED BY CONTRACTOR IS TO BE PERFORMED IN ACCORDANCE WITH THE CONTRACTOR'S AND ENGINEER’S STANDARDS.
18. ALL WORK IS TO BE PERFORMED BY CONTRACTOR AND CHECKED PER CONTRACTOR'S AND ENGINEER’S STANDARDS. WORK PERFORMED BY CONTRACTOR IS TO BE PERFORMED IN ACCORDANCE WITH THE CONTRACTOR'S AND ENGINEER’S STANDARDS.
19. ALL WORK IS TO BE PERFORMED BY CONTRACTOR AND CHECKED PER CONTRACTOR'S AND ENGINEER’S STANDARDS. WORK PERFORMED BY CONTRACTOR IS TO BE PERFORMED IN ACCORDANCE WITH THE CONTRACTOR'S AND ENGINEER’S STANDARDS.
20. ALL WORK IS TO BE PERFORMED BY CONTRACTOR AND CHECKED PER CONTRACTOR'S AND ENGINEER’S STANDARDS. WORK PERFORMED BY CONTRACTOR IS TO BE PERFORMED IN ACCORDANCE WITH THE CONTRACTOR'S AND ENGINEER’S STANDARDS.
WORK NOTES:

1. PROVIDE GAS SHUT-OFF VALVE AND INSTALL 3/4" G (2PSI, 75) IN FRONT OF GAS METER. PROVIDE GAS SHUT-OFF VALVE AND INSTALL 1" G (2PSI, 75) IN FRONT OF GAS METER.

2. PROVIDE GAS SHUT-OFF VALVE AND INSTALL 3/4" G (2PSI, 75) IN FRONT OF GAS METER. PROVIDE GAS SHUT-OFF VALVE AND INSTALL 1" G (2PSI, 75) IN FRONT OF GAS METER.

3. PROVIDE GAS SHUT-OFF VALVE AND INSTALL 3/4" G (2PSI, 75) IN FRONT OF GAS METER. PROVIDE GAS SHUT-OFF VALVE AND INSTALL 1" G (2PSI, 75) IN FRONT OF GAS METER.

4. PROVIDE GAS SHUT-OFF VALVE AND INSTALL 3/4" G (2PSI, 75) IN FRONT OF GAS METER. PROVIDE GAS SHUT-OFF VALVE AND INSTALL 1" G (2PSI, 75) IN FRONT OF GAS METER.

5. PROVIDE GAS SHUT-OFF VALVE AND INSTALL 3/4" G (2PSI, 75) IN FRONT OF GAS METER. PROVIDE GAS SHUT-OFF VALVE AND INSTALL 1" G (2PSI, 75) IN FRONT OF GAS METER.

6. PROVIDE GAS SHUT-OFF VALVE AND INSTALL 3/4" G (2PSI, 75) IN FRONT OF GAS METER. PROVIDE GAS SHUT-OFF VALVE AND INSTALL 1" G (2PSI, 75) IN FRONT OF GAS METER.

7. PROVIDE GAS SHUT-OFF VALVE AND INSTALL 3/4" G (2PSI, 75) IN FRONT OF GAS METER. PROVIDE GAS SHUT-OFF VALVE AND INSTALL 1" G (2PSI, 75) IN FRONT OF GAS METER.

8. PROVIDE GAS SHUT-OFF VALVE AND INSTALL 3/4" G (2PSI, 75) IN FRONT OF GAS METER. PROVIDE GAS SHUT-OFF VALVE AND INSTALL 1" G (2PSI, 75) IN FRONT OF GAS METER.

9. PROVIDE GAS SHUT-OFF VALVE AND INSTALL 3/4" G (2PSI, 75) IN FRONT OF GAS METER. PROVIDE GAS SHUT-OFF VALVE AND INSTALL 1" G (2PSI, 75) IN FRONT OF GAS METER.

10. PROVIDE GAS SHUT-OFF VALVE AND INSTALL 3/4" G (2PSI, 75) IN FRONT OF GAS METER. PROVIDE GAS SHUT-OFF VALVE AND INSTALL 1" G (2PSI, 75) IN FRONT OF GAS METER.
WORK NOTES:

1. Connect NEW 4" SS TO EXISTING GRADE CLEANOUT. PLUMBING CONTRACTOR TO FIELD VERIFY EXACT LOCATION.

2. DO NOT TRAP TRENCH DRAIN. SAND/OIL INTERCEPTOR SHALL SERVE AS TRAP FOR FUTURE.

3. ROUTE (2) 2" VENTS UP THROUGH SLAB. COMBINE INTO (1) 2" VENT AND CONTINUE UP TO 3" VTR.

4. 2" V UP TO 3" VTR.

5. (2) 2" VENTS STACKED.

6. 3" OSD HIGH THROUGH SIDEWALL. COORDINATE WITH ARCHITECTURAL DRAWINGS.

01/24/2020
Section 1: Project Information
- **Address:** 1039 MAIN STREET
- **Suite:** UNIT G
- **City/State/Zip:** WINDSOR, CO 80550
- **Phone:** (970) 460-7400
- **Website:** G2CE.COM

Section 3: Interior Lighting and Power Calculation

<table>
<thead>
<tr>
<th>Item</th>
<th>Wattage</th>
<th>Power Factor</th>
<th>Efficiency</th>
<th>Factor</th>
<th>Cost Factor</th>
<th>Ratio</th>
<th>Life (Years)</th>
<th>Life (Watts)</th>
<th>Life (Cost)</th>
<th>Total (Watts)</th>
<th>Total (Cost)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED</td>
<td></td>
</tr>
</tbody>
</table>

Section 4: Requirements Checklist
- **Lighting:**
 1. The provision area to be clear of any obstructions.
 2. The provision to be a maximum of 40W per fixture.
 3. The provision to be a maximum of 40W per area.

Section 5: Compliance Statement
- **Compliance:** The proposed lighting plan is consistent with the requirements of the building code andエネルギー efficient design principles.
- **Date:** 01/24/2020

Section 2: Exterior Lighting Anomalies Power Calculation

<table>
<thead>
<tr>
<th>Item</th>
<th>Wattage</th>
<th>Power Factor</th>
<th>Efficiency</th>
<th>Factor</th>
<th>Cost Factor</th>
<th>Ratio</th>
<th>Life (Years)</th>
<th>Life (Watts)</th>
<th>Life (Cost)</th>
<th>Total (Watts)</th>
<th>Total (Cost)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED</td>
<td></td>
</tr>
</tbody>
</table>

Section 6: Requirements Checklist
- **Lighting:**
 1. The provision area to be clear of any obstructions.
 2. The provision to be a maximum of 40W per fixture.
 3. The provision to be a maximum of 40W per area.

General Notes
- **Date:** 01/24/2020
- **Signatory:** [Signature]
- **Date:** 01/24/2020

Generated by COMcheck v2.6.1 Software
PART 1 - GENERAL
A. GENERAL
1. PROVIDE ELECTRICAL SYSTEMS IN ACCORDANCE WITH THE REQUIREMENTS OF THE PROJECT
2. ELECTRICAL SYSTEMS ARE DESIGNED TO MEET THE NEEDS OF THE PROJECT.
3. ELECTRICAL SYSTEMS ARE LOCATED IN ACCORDANCE WITH THE ARCHITECTURAL AND ENGINEERING DRAWINGS.
4. ELECTRICAL SYSTEMS ARE CONCEALED WHERE PRACTICAL.
5. ELECTRICAL SYSTEMS ARE INSTALLED IN ACCORDANCE WITH THE APPROPRIATE CODES AND STANDARDS.

B. WORKSHEET
1. PROVIDE A WORKSHEET DESCRIBING THE ELECTRICAL SYSTEMS

C. COMPONENTS
1. PROVIDE COMPONENTS THAT MEET THE REQUIREMENTS OF THE PROJECT
2. PROVIDE COMPONENTS THAT ARE LISTED AND MARKETED.

D. DRAWINGS AND SPECIFICATIONS
1. PROVIDE DRAWINGS AND SPECIFICATIONS THAT MEET THE REQUIREMENTS OF THE PROJECT
2. PROVIDE DRAWINGS AND SPECIFICATIONS THAT ARE CLEAR AND COMPLETE.

E. OTHER ELECTRICAL APPARATUS
1. PROVIDE OTHER ELECTRICAL APPARATUS THAT MEET THE REQUIREMENTS OF THE PROJECT
2. PROVIDE OTHER ELECTRICAL APPARATUS THAT ARE LISTED AND MARKETED.

PART 2 - PRODUCTS
A. GENERAL
1. PROVIDE PRODUCTS THAT MEET THE REQUIREMENTS OF THE PROJECT
2. PROVIDE PRODUCTS THAT ARE LISTED AND MARKETED.

B. WORKSHEET
1. PROVIDE A WORKSHEET DESCRIBING THE PRODUCTS

C. COMPONENTS
1. PROVIDE COMPONENTS THAT MEET THE REQUIREMENTS OF THE PROJECT
2. PROVIDE COMPONENTS THAT ARE LISTED AND MARKETED.

D. DRAWINGS AND SPECIFICATIONS
1. PROVIDE DRAWINGS AND SPECIFICATIONS THAT MEET THE REQUIREMENTS OF THE PROJECT
2. PROVIDE DRAWINGS AND SPECIFICATIONS THAT ARE CLEAR AND COMPLETE.

E. OTHER ELECTRICAL APPARATUS
1. PROVIDE OTHER ELECTRICAL APPARATUS THAT MEET THE REQUIREMENTS OF THE PROJECT
2. PROVIDE OTHER ELECTRICAL APPARATUS THAT ARE LISTED AND MARKETED.

PART 3 - EXECUTION
A. GENERAL
1. PROVIDE A GENERAL DESCRIPTION OF THE ELECTRICAL SYSTEMS
2. PROVIDE A GENERAL DESCRIPTION OF THE PRODUCTS

B. WORKSHEET
1. PROVIDE A WORKSHEET DESCRIBING THE GENERAL DESCRIPTION

C. COMPONENTS
1. PROVIDE COMPONENTS THAT MEET THE REQUIREMENTS OF THE GENERAL DESCRIPTION
2. PROVIDE COMPONENTS THAT ARE LISTED AND MARKETED.

D. DRAWINGS AND SPECIFICATIONS
1. PROVIDE DRAWINGS AND SPECIFICATIONS THAT MEET THE REQUIREMENTS OF THE GENERAL DESCRIPTION
2. PROVIDE DRAWINGS AND SPECIFICATIONS THAT ARE CLEAR AND COMPLETE.

E. OTHER ELECTRICAL APPARATUS
1. PROVIDE OTHER ELECTRICAL APPARATUS THAT MEET THE REQUIREMENTS OF THE GENERAL DESCRIPTION
2. PROVIDE OTHER ELECTRICAL APPARATUS THAT ARE LISTED AND MARKETED.

PART 4 - DESIGN-BUILD FIRE ALARM AND DETECTION SYSTEM PERFORMANCE CRITERIA
A. GENERAL
1. PROVIDE A GENERAL DESCRIPTION OF THE FIRE ALARM AND DETECTION SYSTEM

B. SYSTEM DESCRIPTION
1. PROVIDE A GENERAL DESCRIPTION OF THE SYSTEM

C. OPERATIONAL DESCRIPTION
1. PROVIDE A GENERAL DESCRIPTION OF THE OPERATIONAL ASPECTS

D. dead-end runs to the last wiring device on a circuit.

E. ABANDONED OR TABULATED SHEETS.

F. READINESS CRITERIA
1. PROVIDE A DESCRIPTION OF THE READINESS CRITERIA

G. SYSTEM MAINTENANCE
1. PROVIDE A DESCRIPTION OF THE MAINTENANCE REQUIREMENTS

H. SYSTEM TESTING
1. PROVIDE A DESCRIPTION OF THE TESTING REQUIREMENTS

I. SYSTEM PERFORMANCE CRITERIA
1. PROVIDE A DESCRIPTION OF THE PERFORMANCE CRITERIA

J. SYSTEM ACCEPTANCE CRITERIA
1. PROVIDE A DESCRIPTION OF THE ACCEPTANCE CRITERIA
600 VOLT FEEDER SCHEDULE - COPPER

<table>
<thead>
<tr>
<th>FEEDER IDENTIFICATION</th>
<th>AMPERAGE</th>
<th>PHASE CONDUCTORS TO</th>
<th>QUANTITY</th>
<th>SIZE</th>
<th>AMPERAGE</th>
<th>QUANTITY</th>
<th>SIZE</th>
<th>AMPERAGE</th>
<th>QUANTITY</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>3</td>
<td>K10</td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>K10</td>
<td>40</td>
<td>1</td>
<td>K10</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>3</td>
<td>K10</td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>K10</td>
<td>40</td>
<td>1</td>
<td>K10</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>3</td>
<td>K10</td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>K10</td>
<td>40</td>
<td>1</td>
<td>K10</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>3</td>
<td>K10</td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>K10</td>
<td>40</td>
<td>1</td>
<td>K10</td>
</tr>
<tr>
<td>5</td>
<td>125</td>
<td>3</td>
<td>K10</td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>K10</td>
<td>40</td>
<td>1</td>
<td>K10</td>
</tr>
<tr>
<td>6</td>
<td>175</td>
<td>3</td>
<td>K10</td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>K10</td>
<td>40</td>
<td>1</td>
<td>K10</td>
</tr>
<tr>
<td>7</td>
<td>200</td>
<td>3</td>
<td>K10</td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>K10</td>
<td>40</td>
<td>1</td>
<td>K10</td>
</tr>
<tr>
<td>8</td>
<td>225</td>
<td>3</td>
<td>K10</td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>K10</td>
<td>40</td>
<td>1</td>
<td>K10</td>
</tr>
<tr>
<td>9</td>
<td>250</td>
<td>3</td>
<td>K10</td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>K10</td>
<td>40</td>
<td>1</td>
<td>K10</td>
</tr>
<tr>
<td>10</td>
<td>300</td>
<td>3</td>
<td>K10</td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>K10</td>
<td>40</td>
<td>1</td>
<td>K10</td>
</tr>
<tr>
<td>11</td>
<td>400</td>
<td>3</td>
<td>K10</td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>K10</td>
<td>40</td>
<td>1</td>
<td>K10</td>
</tr>
<tr>
<td>12</td>
<td>600</td>
<td>3</td>
<td>K10</td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>K10</td>
<td>40</td>
<td>1</td>
<td>K10</td>
</tr>
<tr>
<td>13</td>
<td>800</td>
<td>3</td>
<td>K10</td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>K10</td>
<td>40</td>
<td>1</td>
<td>K10</td>
</tr>
<tr>
<td>14</td>
<td>1200</td>
<td>3</td>
<td>K10</td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>K10</td>
<td>40</td>
<td>1</td>
<td>K10</td>
</tr>
<tr>
<td>15</td>
<td>1600</td>
<td>3</td>
<td>K10</td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>K10</td>
<td>40</td>
<td>1</td>
<td>K10</td>
</tr>
<tr>
<td>16</td>
<td>2000</td>
<td>3</td>
<td>K10</td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>K10</td>
<td>40</td>
<td>1</td>
<td>K10</td>
</tr>
<tr>
<td>17</td>
<td>2400</td>
<td>3</td>
<td>K10</td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>K10</td>
<td>40</td>
<td>1</td>
<td>K10</td>
</tr>
<tr>
<td>18</td>
<td>2800</td>
<td>3</td>
<td>K10</td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>K10</td>
<td>40</td>
<td>1</td>
<td>K10</td>
</tr>
<tr>
<td>19</td>
<td>3200</td>
<td>3</td>
<td>K10</td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>K10</td>
<td>40</td>
<td>1</td>
<td>K10</td>
</tr>
<tr>
<td>20</td>
<td>3600</td>
<td>3</td>
<td>K10</td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>K10</td>
<td>40</td>
<td>1</td>
<td>K10</td>
</tr>
<tr>
<td>21</td>
<td>4000</td>
<td>3</td>
<td>K10</td>
<td>40</td>
<td>40</td>
<td>1</td>
<td>K10</td>
<td>40</td>
<td>1</td>
<td>K10</td>
</tr>
</tbody>
</table>

WORK NOTES:

1. PROVIDE NEW BREAKER IN EXISTING SWITCHBOARD. COORDINATE WITH EXISTING GEAR MANUFACTURER AND AIC RATING.
2. PROVIDE (1) 1"C WITH REQUIRED CONTROL WIRING FOR ATS STATUS, GENERATOR RUN, REMOTE ANNUNCIATOR, SHUNT-TRIP, ETC. AS RECOMMENDED BY MANUFACTURER.
3. PROVIDE, INSTALL, TEST AND COMMISSION A NEW 100AMP / 4 POLE, 600 VOLT RATED AUTOMATIC TRANSFER SWITCH, ADJUSTABLE TIME-DELAY, OPEN TRANSITION, CONTRACTOR TYPE, TRANSFER SWITCH SHALL BE PROVIDED BY SAME MANUFACTURER AS GENERATOR.
4. GENERATOR SHALL BE DERATED FOR ALTITUDE. ENCLOSURE SHALL BE RATED FOR 75 DBA AT 25', THERMALLY INSULATED, AND ENHANCED COOLING SYSTEM RATED FOR 50 DEGREES C. PROVIDE DOUBLE WALL SUB-BASE FUEL TANK SIZED FOR 12 HOUR RUNTIME AT FULL LOAD.

ELECTRICAL SINGLE-LINE

Panel Schedule: Panel G'M

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Size</th>
<th>MFR</th>
<th>#</th>
<th>PH</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Panel</td>
<td>Main Panel</td>
<td>1200 x 600</td>
<td>100</td>
<td>1</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Sub Panel</td>
<td>Sub Panel</td>
<td>900 x 450</td>
<td>80</td>
<td>1</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Main Panel</td>
<td>Main Panel</td>
<td>1000 x 500</td>
<td>50</td>
<td>1</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Sub Panel</td>
<td>Sub Panel</td>
<td>750 x 375</td>
<td>40</td>
<td>1</td>
<td>220</td>
<td></td>
</tr>
</tbody>
</table>

Connectors and Cables:
- 1200 x 600: 220V, 3-phase, 4-wire
- 900 x 450: 220V, 3-phase, 4-wire
- 1000 x 500: 220V, 3-phase, 4-wire
- 750 x 375: 220V, 3-phase, 4-wire

Panel Schedule: Panel L2

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Size</th>
<th>MFR</th>
<th>#</th>
<th>PH</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Panel</td>
<td>Main Panel</td>
<td>1200 x 600</td>
<td>100</td>
<td>1</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Sub Panel</td>
<td>Sub Panel</td>
<td>900 x 450</td>
<td>80</td>
<td>1</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Main Panel</td>
<td>Main Panel</td>
<td>1000 x 500</td>
<td>50</td>
<td>1</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Sub Panel</td>
<td>Sub Panel</td>
<td>750 x 375</td>
<td>40</td>
<td>1</td>
<td>220</td>
<td></td>
</tr>
</tbody>
</table>

Connectors and Cables:
- 1200 x 600: 220V, 3-phase, 4-wire
- 900 x 450: 220V, 3-phase, 4-wire
- 1000 x 500: 220V, 3-phase, 4-wire
- 750 x 375: 220V, 3-phase, 4-wire

Panel Schedule: Panel L1

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Size</th>
<th>MFR</th>
<th>#</th>
<th>PH</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Panel</td>
<td>Main Panel</td>
<td>1200 x 600</td>
<td>100</td>
<td>1</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Sub Panel</td>
<td>Sub Panel</td>
<td>900 x 450</td>
<td>80</td>
<td>1</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Main Panel</td>
<td>Main Panel</td>
<td>1000 x 500</td>
<td>50</td>
<td>1</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Sub Panel</td>
<td>Sub Panel</td>
<td>750 x 375</td>
<td>40</td>
<td>1</td>
<td>220</td>
<td></td>
</tr>
</tbody>
</table>

Connectors and Cables:
- 1200 x 600: 220V, 3-phase, 4-wire
- 900 x 450: 220V, 3-phase, 4-wire
- 1000 x 500: 220V, 3-phase, 4-wire
- 750 x 375: 220V, 3-phase, 4-wire
ELECTRICAL DIAGRAMS

FINISH GRADE 3'-0"

RE: STRUCTURAL DRAWINGS

LIGHT FIXTURE(S) - PER PLANS/SCHEDULE
ANCHOR BASE POLE - PER PLANS/SCHEDULE
REINFORCED HANDHOLE W/GROUNDING PROVISION
GROUND LUG
TWO-PIECE FULL BASE COVER
BASE PLATE AND ANCHOR BOLTS BY POLE MANUFACTURER
CONCRETE POLE BASE. REFERENCE STRUCTURAL DRAWINGS FOR ALL STRUCTURAL REQUIREMENTS. SHOWN HERE FOR ELECTRICAL AND GENERAL ARRANGEMENT INFORMATION ONLY

LINE VOLTAGE RACEWAY
LOW-VOLTAGE RACEWAY (WHERE APPLICABLE)

20'-0" #4 CU BARE COPPER PANCAKE COIL

SCALE:
A
DIAGRAM - LIGHTING CONTACTOR

C
DIAGRAM - RECEPTACLE HEIGHT

E
DIAGRAM - TBAR MOUNTING

G
DIAGRAM - POLE MOUNTED FIXTURE

NOTES:
1. MOUNT BOXES, RACEWAYS, AND EQUIPMENT TO STRUCTURAL CEILING, OR, SUPPORT A MINIMUM 18" ABOVE LAY-IN CEILING.
2. BOXES, RACEWAYS, AND EQUIPMENT SHALL BE SITUATED SUCH THAT ANY FIXTURE CAN BE SHIFTED UP TO 6'-0" IN ANY DIRECTION WITHOUT ADDITIONAL CIRCUITING.

TELECOM OUTLETS WITHOUT A DEFINED MOUNTING HEIGHT
THE TOP OF THE DEVICE
TELECOM OUTLETS INDICATED AS > +18" AFF SHALL BE MEASURED TO THE TOP OF THE DEVICE, ON TELECOM OUTLETS INDICATED AS COUNTER (CTR) MOUNTED SHALL BE LOCATED +6" ABOVE THE BACKSPLASH OR COUNTER SURFACE, MEASURED TO THE BOTTOM OF THE DEVICE
TELECOM OUTLETS INDICATED AS < +18" AFF SHALL BE MEASURED TO THE CENTERLINE OF THE DEVICE, ON TELECOM OUTLETS INDICATED AS COUNTER (CTR) MOUNTED SHALL BE LOCATED +6" ABOVE THE BACKSPLASH OR COUNTER SURFACE, MEASURED TO THE BOTTOM OF THE DEVICE

WALL SWITCHES WITHOUT A DEFINED MOUNTING HEIGHT
THE TOP OF THE SWITCH
SHELTERED FIXTURES, PROTECTED/SHIELDED
ANCHOR BASE POLE - PER PLANS/SCHEDULE
CONCRETE POLE BASE, SEE ARCHITECTURAL LIGHT FIXTURE, TYP 6'-0" FLEXIBLE WHIP, TYP CLIP OR TIE WIRE TO SUSPENDED METAL GRID
SECURE FIXTURE TO GRID VIA EARTHQUAKE CLIPS, TYPICAL TWO (2) PER SIDE BAR HANGERS, TYP JUNCTION-BOX, 4-S MINIMUM COMBINATION BOX/CONDUIT HANGER OR CODE EQUIVALENT, TYP SUPPLEMENTAL GALVANIZED HANGER WIRES (#12 AWG MIN) INDEPENDENT OF SUSPENDED METAL GRID AT TWO (2) CORNERS, TYP. PROVIDE SUPPLEMENTAL SUPPORT FOR FIXTURES OVER (96) LB'S.
SUPPLEMENTAL CIRCUITING SUPPORT AS REQUIRED

CCTV CAMERA, SPEAKER, ANTENNA, ETC. LAY-IN CEILING, SEE ARCHITECTURAL LIGHT FIXTURE, TYP 6'-0" FLEXIBLE WHIP, TYP CLIP OR TIE WIRE TO SUSPENDED METAL GRID

SUSPENDED METAL GRID
BAR HANGERS, TYP JUNCTION-BOX, 4-S MINIMUM COMBINATION BOX/CONDUIT HANGER OR CODE EQUIVALENT, TYP SUPPLEMENTAL GALVANIZED HANGER WIRES (#12 AWG MIN) INDEPENDENT OF SUSPENDED METAL GRID AT TWO (2) CORNERS, TYP. PROVIDE SUPPLEMENTAL SUPPORT FOR FIXTURES OVER (96) LB'S.
SUPPLEMENTAL CIRCUITING SUPPORT AS REQUIRED

SCALE:
D
DIAGRAM - GROUNDING DIAGRAM

E
DIAGRAM - POLE MOUNTED FIXTURE
WORK NOTES:

1. Route new feeder from new electrical room to existing main electrical room. Refer to single line for additional information. Provide traffic-rated pull box as required.

2. Provide power to motorized gate. Coordinate connection requirements with owner prior to rough-in.

3. Provide receptacle for vehicle block heater.

4. Connect (3) #8 + (1) #10 ground in 1"C to generator auxiliary panel. Coordinate exact requirements with equipment manufacturer prior to rough-in.

5. Route time clock to TC-1.

6. Ensure feeder is routed directly into electrical room from the exterior. Coordinate connection to take with owner to ensure compliance.

1/16" = 1'-0"
PROVIDE POWER TO GARAGE DOOR OPERATOR. INSTALL PUSH BUTTON AND ASSOCIATED WIRING.

6. PROVIDE RECEPTACLE FOR CONNECTION TO A/V SCREEN. VERIFY EXACT LOCATION AND MOUNTING HEIGHT WITH OWNER PRIOR TO ROUGH-IN.

7. OWNER.

8. PROVIDE POWER TO MOTORHEAD STORAGE SHELVES. COORDINATE POWER REQUIREMENTS WITH OWNER.

9. PROVIDE RECEPTACLE TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

10. WORK NOTES:

1. PROVIDE RECEPTACLE (30 AMP, 208, L6-30) TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

2. PROVIDE RECEPTACLE (20 AMP, 208, L6-15) TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

3. PROVIDE RECEPTACLE (15 AMP, 208, L5-15) TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

4. PROVIDE RECEPTACLE (15 AMP, 208, L14-15) TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

5. PROVIDE POWER TO SECURITY CONTROL PANEL.

6. PROVIDE POWER TO DOOR CONTROL PANEL.

7. PROVIDE NORTH POWER AND CONTROL WIRING UP TO ASSOCIATED CONDENSING UNIT. SEE AND CONNECT PER MANUFACTURER'S RECOMMENDATION.

8. PROVIDE NORTH POWER TO LOCAL LIGHTING CIRCUIT.

9. PROVIDE POWER TO MOTORHEAD STORAGE SHELVES. COORDINATE POWER REQUIREMENTS WITH OWNER.

10. PROVIDE POWER TO GARAGE DOOR OPERATOR. INSTALL PUSH BUTTON AND ASSOCIATED WIRING.

11. PROVIDE RECEPTACLE FOR CONNECTION TO A/V SCREEN. VERIFY EXACT LOCATION AND MOUNTING HEIGHT WITH OWNER PRIOR TO ROUGH-IN.

12. PROVIDE RECEPTACLE TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

13. PROVIDE RECEPTACLE (30 AMP, 208, L6-30) TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

14. PROVIDE RECEPTACLE (20 AMP, 208, L6-15) TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

15. PROVIDE RECEPTACLE (15 AMP, 208, L5-15) TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

16. PROVIDE RECEPTACLE (15 AMP, 208, L14-15) TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

17. PROVIDE NORTH POWER TO LOCAL LIGHTING CIRCUIT.

18. PROVIDE POWER TO MOTORHEAD STORAGE SHELVES. COORDINATE POWER REQUIREMENTS WITH OWNER.

19. PROVIDE POWER TO GARAGE DOOR OPERATOR. INSTALL PUSH BUTTON AND ASSOCIATED WIRING.

20. PROVIDE RECEPTACLE FOR CONNECTION TO A/V SCREEN. VERIFY EXACT LOCATION AND MOUNTING HEIGHT WITH OWNER PRIOR TO ROUGH-IN.

21. PROVIDE RECEPTACLE TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

22. PROVIDE RECEPTACLE (30 AMP, 208, L6-30) TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

23. PROVIDE RECEPTACLE (20 AMP, 208, L6-15) TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

24. PROVIDE RECEPTACLE (15 AMP, 208, L5-15) TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

25. PROVIDE RECEPTACLE (15 AMP, 208, L14-15) TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

26. PROVIDE NORTH POWER TO LOCAL LIGHTING CIRCUIT.

27. PROVIDE POWER TO MOTORHEAD STORAGE SHELVES. COORDINATE POWER REQUIREMENTS WITH OWNER.

28. PROVIDE POWER TO GARAGE DOOR OPERATOR. INSTALL PUSH BUTTON AND ASSOCIATED WIRING.

29. PROVIDE RECEPTACLE FOR CONNECTION TO A/V SCREEN. VERIFY EXACT LOCATION AND MOUNTING HEIGHT WITH OWNER PRIOR TO ROUGH-IN.

30. PROVIDE RECEPTACLE TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

31. PROVIDE RECEPTACLE (30 AMP, 208, L6-30) TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

32. PROVIDE RECEPTACLE (20 AMP, 208, L6-15) TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

33. PROVIDE RECEPTACLE (15 AMP, 208, L5-15) TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

34. PROVIDE RECEPTACLE (15 AMP, 208, L14-15) TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

35. PROVIDE NORTH POWER TO LOCAL LIGHTING CIRCUIT.

36. PROVIDE POWER TO MOTORHEAD STORAGE SHELVES. COORDINATE POWER REQUIREMENTS WITH OWNER.

37. PROVIDE POWER TO GARAGE DOOR OPERATOR. INSTALL PUSH BUTTON AND ASSOCIATED WIRING.

38. PROVIDE RECEPTACLE FOR CONNECTION TO A/V SCREEN. VERIFY EXACT LOCATION AND MOUNTING HEIGHT WITH OWNER PRIOR TO ROUGH-IN.

39. PROVIDE RECEPTACLE TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

40. PROVIDE RECEPTACLE (30 AMP, 208, L6-30) TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

41. PROVIDE RECEPTACLE (20 AMP, 208, L6-15) TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

42. PROVIDE RECEPTACLE (15 AMP, 208, L5-15) TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

43. PROVIDE RECEPTACLE (15 AMP, 208, L14-15) TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.

44. PROVIDE NORTH POWER TO LOCAL LIGHTING CIRCUIT.

45. PROVIDE POWER TO MOTORHEAD STORAGE SHELVES. COORDINATE POWER REQUIREMENTS WITH OWNER.

46. PROVIDE POWER TO GARAGE DOOR OPERATOR. INSTALL PUSH BUTTON AND ASSOCIATED WIRING.

47. PROVIDE RECEPTACLE FOR CONNECTION TO A/V SCREEN. VERIFY EXACT LOCATION AND MOUNTING HEIGHT WITH OWNER PRIOR TO ROUGH-IN.

48. PROVIDE RECEPTACLE TO MATCH EQUIPMENT CORD CAP NEMA CONFIGURATION AND AMP RATING.
FLOOR PLAN - TELECOM

GENERAL NOTES:

1. CONTRACTOR SHALL PROVIDE NECESSARY RACEWAYS, BACKBOXES, MUD-RINGS, J-HOOKS, ETC. FOR A COMPLETE TELECOM PATHWAY SYSTEM. ALL DEVICES, CABLING, EQUIPMENT ETC BY OTHERS.

WORK NOTES:

1. PROVIDE RECEPTACLE FOR CONNECTION TO A/V SCREEN. VERIFY EXACT LOCATION AND MOUNTING HEIGHT WITH OWNER PRIOR TO ROUGH-IN.

2. ROUTE C/J TO NEAR IT ROOM 133.

SCALE: 1/8" = 1'-0"
GENERAL NOTES:

1. THE FUSE SIZE NOTED AS TO BE PER MANUFACTURE RECOMMENDATION.

WORK NOTES:

1. ROUTE POWER AND CONTROL WIRING UP TO ASSOCIATED CONDENSING UNIT, SIZE AND CONNECT PER MANUFACTURER'S RECOMMENDATION.

2. ROUTE TO TIMECLOCK 'TC-1'.

SCALE: 1/8" = 1'-0"