DIVISION 26 - ELECTRICAL

260500 COMMON WORK RESULTS FOR ELECTRICAL
260519 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
260526 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
260529 HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS
260533 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS
260553 IDENTIFICATION FOR ELECTRICAL SYSTEMS
262416 PANELBOARDS
262726 WIRING DEVICES
262813 FUSES
262816 ENCLOSED SWITCHES AND CIRCUIT BREAKERS
262913 ENCLOSED CONTROLLERS
262923 VARIABLE FREQUENCY MOTOR CONTROLLERS
264313 TRANSIENT-VOLTAGE SURGE SUPPRESSOR
265100 INTERIOR LIGHTING

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

280500 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY
280513 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY
283100 FIRE DETECTION AND ALARM
284000 CNG GAS MONITORING SYSTEM
SECTION 260500 - COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Electrical equipment coordination and installation.
 2. Sleeves for raceways and cables.
 3. Sleeve seals.
 5. Common electrical installation requirements.

1.3 DEFINITIONS
 A. EPDM: Ethylene-propylene-diene terpolymer rubber.

1.4 SUBMITTALS
 A. Product Data: For sleeve seals.

1.5 COORDINATION
 A. Coordinate arrangement, mounting, and support of electrical equipment:
 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 3. To allow right of way for piping and conduit installed at required slope.
 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.

 B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

 C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section "Access Doors and Frames."

COMMON WORK RESULTS FOR ELECTRICAL

260500-Page 1 of 6
1.6 Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

1.7 ELECTRICAL AND MECHANICAL COORDINATION

A. Responsibility: Unless otherwise indicated, all motors and controls for Division 15 equipment shall be furnished, set in place and wired in accordance with the following schedule:

<table>
<thead>
<tr>
<th>ITEM</th>
<th>FURNISHED UNDER DIVISION</th>
<th>SET IN PLACE UNDER DIVISION</th>
<th>POWER WIRING UNDER DIVISION</th>
<th>CONTROL WIRING UNDER DIVISION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment Motors</td>
<td>21, 22, 23</td>
<td>21, 22, 23</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Starters/Contactors:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separate</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>21, 23</td>
</tr>
<tr>
<td>Factory Mounted</td>
<td>21, 22, 23</td>
<td>21, 22, 23</td>
<td>26</td>
<td>21, 23</td>
</tr>
<tr>
<td>In Motor Control Centers</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>22, 23</td>
</tr>
<tr>
<td>Variable Speed Packages</td>
<td>22, 23</td>
<td>22, 23</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>Disconnect Switches</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separate</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Factory Mounted</td>
<td>22, 23</td>
<td>22, 23</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Thermal Overload Switches</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Manual Operating Switches</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Control Relays - Separate</td>
<td>21, 22, 23</td>
<td>21, 22, 23</td>
<td>26</td>
<td>21, 22</td>
</tr>
<tr>
<td>Control Relays - in Packaged Equipment</td>
<td>21, 22, 23</td>
<td>21, 22, 23</td>
<td>26</td>
<td>21, 22</td>
</tr>
<tr>
<td>Control Transformers - Separate</td>
<td>23</td>
<td>23</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>Control Transformers - in Packaged Equipment</td>
<td>21, 22, 23</td>
<td>21, 22, 23</td>
<td>26</td>
<td>21, 22</td>
</tr>
<tr>
<td>Time Switches</td>
<td>21, 22, 23</td>
<td>21, 22, 23</td>
<td>26</td>
<td>21, 22</td>
</tr>
<tr>
<td>Thermostat and Controls: Integral with Equipment</td>
<td>21, 22, 23</td>
<td>21, 22, 23</td>
<td>26</td>
<td>21, 23</td>
</tr>
<tr>
<td>Equipment in Temperature Control Panels</td>
<td>23</td>
<td>23</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>Valves, Dampers</td>
<td>21, 22, 23</td>
<td>21, 22, 23</td>
<td>26</td>
<td>21, 23</td>
</tr>
<tr>
<td>Valve Motors, Damper Motors, Solenoid, Valves, etc.</td>
<td>21, 22, 23</td>
<td>21, 22, 23</td>
<td>26</td>
<td>21, 23</td>
</tr>
<tr>
<td>EP Switches, P.E. Switches, etc.</td>
<td>21, 22, 23</td>
<td>21, 22, 23</td>
<td>26</td>
<td>21, 23</td>
</tr>
</tbody>
</table>
B. Control Wiring:
1. Consists of wiring in pilot circuits of contactors, starters, relays, valve and damper operators, etc.
2. For single phase devices where power current passes through controller, wiring between controller and device shall be considered control wiring; wiring to device from electric panel shall be considered power wiring.

1.8 ELECTRICAL CONNECTION

A. Electrical connection to equipment furnished by others shall include adaptation of the power supply conductors, raceways, cable lugs, etc. to accommodate the provided equipment.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advance Products & Systems, Inc.
2. Calpico, Inc.
3. Metraflex Co.
4. Pipeline Seal and Insulator, Inc.

B. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.

1. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
2. Pressure Plates: Plastic. Include two for each sealing element.
3. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.2 SLEEVE SEALS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Metraflex Co.
 d. Pipeline Seal and Insulator, Inc.
2. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
3. Pressure Plates: Carbon steel. Include two for each sealing element.
4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

A. Comply with NECA 1.
B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
E. Right of Way: Give to piping systems installed at a required slope.

3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."
B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

D. Rectangular Sleeve Minimum Metal Thickness:
 1. For sleeve rectangle perimeter less than 50 inches and no side greater than 16 inches, thickness shall be 0.052 inch.
 2. For sleeve rectangle perimeter equal to, or greater than, 50 inches and 1 or more sides equal to, or greater than, 16 inches, thickness shall be 0.138 inch.

E. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

F. Cut sleeves to length for mounting flush with both wall surfaces.

G. Extend sleeves installed in floors 2 inches above finished floor level.

H. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and cable unless sleeve seal is to be installed.

I. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.

J. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and cable, using joint sealant appropriate for size, depth, and location of joint according to Division 07 Section "Joint Sealants."

K. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at cable penetrations. Install sleeves and seal with firestop materials according to Division 07 Section "Penetration Firestopping."

L. Roof-Penetration Sleeves: Seal penetration of individual cables with flexible boot-type flashing units applied in coordination with roofing work.

M. Aboveground Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Size sleeves to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

N. Underground Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch annular clear space between cable and sleeve for installing mechanical sleeve seals.

3.3 SLEEVE-SEAL INSTALLATION

A. Install to seal underground exterior-wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for cable material and size. Position cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
3.4 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Division 07 Section "Penetration Firestopping."

END OF SECTION 260500
SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Building wires and cables rated 600 V and less.
2. Connectors, splices, and terminations rated 600 V and less.
3. Sleeves and sleeve seals for cables.

1.3 DEFINITIONS

A. EPDM: Ethylene-propylene-diene terpolymer rubber.

1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Field quality-control test reports.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 70.

1.6 COORDINATION

A. Set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Alcan Products Corporation; Alcan Cable Division.
3. General Cable Corporation.
4. Senator Wire & Cable Company.
5. Southwire Company.

B. Copper Conductors: Comply with NEMA WC 70.

C. Conductor Insulation: Comply with NEMA WC 70 for Types THHN-THWN and SO.

D. Multiconductor Cable: Comply with NEMA WC 70 for armored cable, Type AC metal-clad cable, Type MC mineral-insulated, metal-sheathed cable, Type MI and Type SO with ground wire.

2.2 CONNECTORS AND SPLICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AFC Cable Systems, Inc.
3. O-Z/Gedney; EGS Electrical Group LLC.
4. 3M; Electrical Products Division.
5. Tyco Electronics Corp.

B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type THHN-THWN, single conductors in raceway.

B. Exposed Feeders: Type THHN-THWN, single conductors in raceway.

C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Type THHN-THWN, single conductors in raceway.

D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.

E. Feeders Installed below Raised Flooring: Type THHN-THWN, single conductors in raceway, Armored cable, Type AC, Metal-clad cable, Type MC.

F. Feeders in Cable Tray: Type THHN-THWN, single conductors in raceway, Armored cable, Type AC Metal-clad cable, Type MC.

G. Exposed Branch Circuits, Type THHN-THWN, single conductors in raceway.

H. Branch Circuits Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN-THWN, single conductors in raceway, Armored cable, Type AC Metal-clad cable, Type MC.

I. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.

J. Branch Circuits Installed below Raised Flooring: Type THHN-THWN, single conductors in raceway, Armored cable, Type AC Metal-clad cable, Type MC.

K. Branch Circuits in Cable Tray: Type THHN-THWN, single conductors in raceway, Armored cable, Type AC Metal-clad cable, Type MC.

L. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.

M. Class 1 Control Circuits: Type THHN-THWN, in raceway.

N. Class 2 Control Circuits: Type THHN-THWN, in raceway, Power-limited cable, concealed in building finishes Power-limited tray cable, in cable tray.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.

B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

E. Support cables according to Division 26 Section "Hangers and Supports for Electrical Systems."

F. Identify and color-code conductors and cables according to Division 26 Section "Identification for Electrical Systems."

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 12 inches of slack.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports.

B. Perform tests and inspections and prepare test reports.

C. Tests and Inspections:

1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors for compliance with requirements.

D. Test Reports: Prepare a written report to record the following:

1. Test procedures used.
2. Test results that comply with requirements.
3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

E. Remove and replace malfunctioning units and retest as specified above.
SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes methods and materials for grounding systems and equipment

1.3 SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Other Informational Submittals: Plans showing dimensioned as-built locations of grounding features specified in Part 3 "Field Quality Control" Article, including the following:
 1. Ground rods.
 2. Ground rings.
 3. Grounding arrangements and connections for separately derived systems.
 C. Qualification Data: For testing agency and testing agency's field supervisor.
 D. Field quality-control test reports.
 E. Operation and Maintenance Data: For grounding to include the following in emergency, operation, and maintenance manuals:
 1. Instructions for periodic testing and inspection of grounding features at test wells ground rings grounding connections for separately derived systems based on NETA MTS.
 a. Tests shall be to determine if ground resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if they do not.
 b. Include recommended testing intervals.

1.4 QUALITY ASSURANCE
 A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association to supervise on-site testing specified in Part 3.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS

A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:

4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
6. Bonding Jumper: Copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

C. Grounding Bus: Rectangular bars of annealed copper, 1/4 by 2 inches in cross section, unless otherwise indicated; with insulators.

2.2 CONNECTORS

A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.

B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressure-type, with at least two bolts.

1. Pipe Connectors: Clamp type, sized for pipe.

C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.3 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel; 5/8 inch in diameter by 96 inches long.
PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger, unless otherwise indicated.

B. Underground Grounding Conductors: Install barecopper conductor, No. 2/0 AWG minimum.
 1. Bury at least 24 inches below grade.

C. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.

D. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors, except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

C. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.

D. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.

E. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.
F. Signal and Communication Equipment: For telephone, alarm, voice and data, and other communication equipment, provide No. 4 AWG minimum insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location.

2. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.

3.3 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Common Ground Bonding with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.

C. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade, unless otherwise indicated.

1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating, if any.
2. For grounding electrode system, install at least two rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.

D. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit.

1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install so vibration is not transmitted to rigidly mounted equipment.
3. Use exothermic-welded connectors for outdoor locations, but if a disconnect-type connection is required, use a bolted clamp.

E. Grounding and Bonding for Piping:

1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes, using a bolted clamp connector or by bolting a lug-type connector to a pipe flange, using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

F. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet apart.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing and inspecting agency to perform the following field tests and inspections and prepare test reports:

1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
2. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, and at individual ground rods. Make tests at ground rods before any conductors are connected.
 a. Measure ground resistance not less than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 b. Perform tests by fall-of-potential method according to IEEE 81.

B. Report measured ground resistances that exceed the following values:

1. Power and Lighting Equipment or System with Capacity 500 kVA and Less: 10 ohms.

C. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526
SECTION 16073 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Hangers and supports for electrical equipment and systems.
 2. Construction requirements for concrete bases.

B. Related Sections include the following:
 1. Division 26 Section "Vibration And Seismic Controls For Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.3 DEFINITIONS

A. EMT: Electrical metallic tubing.

B. IMC: Intermediate metal conduit.

C. RMC: Rigid metal conduit.

1.4 PERFORMANCE REQUIREMENTS

A. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.

B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

C. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with appropriate safety factor per applicable code(s).

D. Comply with NFPA 70.
1.5 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Tyco International, Ltd.
 g. Wesanco, Inc.

2. Fittings and Accessories: Products of channel and angle manufacturer and designed for use with those items.

3. Fitting and Accessory Materials: Same as channels and angles, except they may be stainless steel.

4. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.

5. Channel Dimensions: Selected for applicable load criteria.

B. Nonmetallic Slotted Support Systems: Structural-grade, factory-formed, glass-fiber-resin channels and angles with 9/16-inch- diameter holes at a maximum of 8 inches o.c., in at least 1 surface.

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. Fabco Plastics Wholesale Limited.
 d. Seasafe, Inc.
2. Fittings and Accessories: Products of channel and angle manufacturer and designed for use with those items.
3. Fitting and Accessory Materials: Same as channels and angles, except metal items may be stainless steel.
4. Rated Strength: Selected to suit applicable load criteria.

C. Raceway and Cable Supports: As described in NECA 1 and NECA 101.

D. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

E. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.

F. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

G. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) Hilti Inc.
 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 3) MKT Fastening, LLC.
 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.

2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 5) MKT Fastening, LLC.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.

HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS
4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
6. Toggle Bolts: All-steel springhead type.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 1. Secure raceways and cables to these supports with single-bolt conduit clamps.

D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.

B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.
C. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts; Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69; or Spring-tension clamps.
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that meet seismic-restraint strength and anchorage requirements.

D. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Division 05 Section "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

B. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Division 03 Section "Cast-in-Place Concrete" or "Cast-in-Place Concrete (Limited Applications)."

C. Anchor equipment to concrete base.
1. Place and secure anchorage devices. Use supported equipment manufacturer's setting
drawings, templates, diagrams, instructions, and directions furnished with items to be
embedded.
2. Install anchor bolts to elevations required for proper attachment to supported equipment.
3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately
after erecting hangers and supports. Use same materials as used for shop painting. Comply
with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply
galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529
SECTION 260533 - RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.
B. Related Sections include the following:
 1. Division 26 Section "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.

1.3 DEFINITIONS
A. EMT: Electrical metallic tubing.
B. ENT: Electrical nonmetallic tubing.
C. EPDM: Ethylene-propylene-diene terpolymer rubber.
D. FMC: Flexible metal conduit.
E. IMC: Intermediate metal conduit.
F. LFMC: Liquidtight flexible metal conduit.
G. LFNC: Liquidtight flexible nonmetallic conduit.
H. NBR: Acrylonitrile-butadiene rubber.
I. RNC: Rigid nonmetallic conduit.

1.4 SUBMITTALS
A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
B. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.
1. Custom enclosures and cabinets.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND TUBING

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. AFC Cable Systems, Inc.
2. Alflex Inc.
3. Allied Tube & Conduit; a Tyco International Ltd. Co.
4. Anamet Electrical, Inc.; Anaconda Metal Hose.
5. Electri-Flex Co.
7. Maverick Tube Corporation.

B. Rigid Steel Conduit: ANSI C80.1.

C. IMC: ANSI C80.6.

D. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.

1. Comply with NEMA RN 1.
2. Coating Thickness: 0.040 inch, minimum.

E. EMT: ANSI C80.3.

F. FMC: Zinc-coated steel or aluminum.

G. LFMC: Flexible steel conduit with PVC jacket.

H. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: NEMA FB 1; listed for type and size raceway with which used, and for application and environment in which installed.

2. Fittings for EMT: set-screw or compression type.
3. Coating for Fittings for PVC-Coated Conduit: Minimum thickness, 0.040 inch, with overlapping sleeves protecting threaded joints.

I. Joint Compound for Rigid Steel Conduit or IMC: Listed for use in cable connector assemblies, and compounded for use to lubricate and protect threaded raceway joints from corrosion and enhance their conductivity.

2.2 NONMETALLIC CONDUIT AND TUBING

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. AFC Cable Systems, Inc.
2. Anamet Electrical, Inc.; Anaconda Metal Hose.
3. Arnco Corporation.
4. CANTEX Inc.
7. ElecSYS, Inc.
8. Electri-Flex Co.
9. Lamson & Sessions; Carlon Electrical Products.
10. Manhattan/CDT/Cole-Flex.
11. RACO; a Hubbell Company.
12. Thomas & Betts Corporation.

B. ENT: NEMA TC 13.

C. RNC: NEMA TC 2, Type EPC-40-PVC, EPC-80-PVC, unless otherwise indicated.

D. LFNC: UL 1660.

E. Fittings for ENT and RNC: NEMA TC 3; match to conduit or tubing type and material.

F. Fittings for LFNC: UL 514B.

2.3 OPTICAL FIBER/COMMUNICATIONS CABLE RACEWAY AND FITTINGS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Arnco Corporation.
2. Endot Industries Inc.
3. IPEX Inc.
4. Lamson & Sessions; Carlon Electrical Products.

B. Description: Comply with UL 2024; flexible type, approved for plenum installation.
2.4 METAL WIREWAYS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Cooper B-Line, Inc.
2. Hoffman.
3. Square D; Schneider Electric.

B. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type 1, unless otherwise indicated.

C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Wireway Covers: Screw-cover type.

E. Finish: Manufacturer's standard enamel finish.

2.5 SURFACE RACEWAYS

A. Surface Metal Raceways: Galvanized steel with snap-on covers. Manufacturer's standard enamel finish in color selected by Architect.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Thomas & Betts Corporation.
 c. Wiremold Company (The); Electrical Sales Division.
 d.

2.6 BOXES, ENCLOSURES, AND CABINETS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.
2. EGS/Appleton Electric.
7. RACO; a Hubbell Company.
10. Spring City Electrical Manufacturing Company.

B. Sheet Metal Outlet and Device Boxes: NEMA OS 1.

C. Cast-Metal Outlet and Device Boxes: NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.

D. Nonmetallic Outlet and Device Boxes: NEMA OS 2.

E. Metal Floor Boxes: Cast or sheet metal, fully adjustable, rectangular.

F. Nonmetallic Floor Boxes: Nonadjustable, round.

G. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

H. Cast-Metal Access, Pull, and Junction Boxes: NEMA FB 1, cast aluminum with gasketed cover.

I. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous-hinge cover with flush latch, unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.

J. Cabinets:
 1. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below, unless otherwise indicated:
 1. Exposed Conduit: Rigid steel conduit.
 2. Concealed Conduit, Aboveground: IMC EMT.
 3. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 4. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Comply with the following indoor applications, unless otherwise indicated:
 1. Exposed, Not Subject to Physical Damage: EMT.
 2. Exposed, Not Subject to Severe Physical Damage: EMT.
3. Exposed and Subject to Severe Physical Damage: Rigid steel conduit. Includes raceways in the following locations:
 a. Loading dock.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 c. Mechanical rooms.
 d.
4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
6. Damp or Wet Locations: Rigid steel conduit.
7. Raceways for Optical Fiber or Communications Cable in Spaces Used for Environmental Air: Plenum-type, optical fiber/communications cable raceway or EMT.
8. Raceways for Optical Fiber or Communications Cable Risers in Vertical Shafts: Riser-type, optical fiber/communications cable raceway or EMT.
9. Raceways for Concealed General Purpose Distribution of Optical Fiber or Communications Cable: General-use, optical fiber/communications cable raceway or EMT.
10. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4, nonmetallic in damp or wet locations.

C. Minimum Raceway Size: 1/2-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.
 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with that material. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer.

E. Do not install aluminum conduits in contact with concrete.

3.2 INSTALLATION

A. Comply with NECA 1 for installation requirements applicable to products specified in Part 2 except where requirements on Drawings or in this Article are stricter.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Support raceways as specified in Division 26 Section "Hangers and Supports for Electrical Systems."

E. Arrange stub-ups so curved portions of bends are not visible above the finished slab.
F. Install no more than the equivalent of three 90-degree bends in any conduit run except for communications conduits, for which fewer bends are allowed.

G. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.

H. Raceways Embedded in Slabs:
 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support.
 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.

I. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

J. Raceway Terminations at Locations Subject to Moisture or Vibration: Use waterproof hubs for terminating raceways at exterior equipment. Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG.

K. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire.

L. Raceways for Optical Fiber and Communications Cable: Install raceways, metallic and nonmetallic, rigid and flexible, as follows:
 1. 3/4-Inch Trade Size and Smaller: Install raceways in maximum lengths of 50 feet.
 2. 1-Inch Trade Size and Larger: Install raceways in maximum lengths of 75 feet.
 3. Install with a maximum of two 90-degree bends or equivalent for each length of raceway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements.

M. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:
 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 2. Where otherwise required by NFPA 70.

N. Expansion-Joint Fittings for RNC: Install in each run of aboveground conduit that is located where environmental temperature change may exceed 30 deg F, and that has straight-run length that exceeds 25 feet.
 1. Install expansion-joint fittings for each of the following locations, and provide type and quantity of fittings that accommodate temperature change listed for location:
a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
c. Indoor Spaces: Connected with the Outdoors without Physical Separation: 125 deg F temperature change.
d. Attics: 135 deg F temperature change.

2. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change.
3. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at the time of installation.

O. Flexible Conduit Connections: Use maximum of 72 inches of flexible conduit for recessed and semirecessed lighting fixtures, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.

1. Use LFMC in damp or wet locations subject to severe physical damage.
2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

P. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall.

Q. Set metal floor boxes level and flush with finished floor surface.
R. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 PROTECTION

A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533
SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

 A. This Section includes the following:

 1. Identification for raceway and metal-clad cable.
 2. Identification for conductors and communication and control cable.
 4. Warning labels and signs, including Arc Flash and Shock Hazard warnings.
 5. Instruction signs.
 7. Miscellaneous identification products.

1.3 SUBMITTALS

 A. Product Data: For each electrical identification product indicated.
 B. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels.
 C. Samples: For each type of label and sign to illustrate size, colors, lettering style, mounting provisions, and graphic features of identification products.

1.4 QUALITY ASSURANCE

 B. Comply with NFPA 70.

1.5 COORDINATION

IDENTIFICATION FOR ELECTRICAL SYSTEMS
B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

C. Coordinate installation of identifying devices with location of access panels and doors.

D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 RACEWAY AND METAL-CLAD CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Color for Printed Legend:
 1. Power Circuits: Black letters on an orange field.
 2. Legend: Indicate system or service and voltage, if applicable.

C. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

D. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; 2 inches wide; compounded for outdoor use.

2.2 CONDUCTOR AND COMMUNICATION- AND CONTROL-CABLE IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide.

B. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

C. Aluminum Wraparound Marker Labels: Cut from 0.014-inch- thick aluminum sheet, with stamped, embossed, or scribed legend, and fitted with tabs and matching slots for permanently securing around wire or cable jacket or around groups of conductors.

D. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking nylon tie fastener.

2.3 WARNING LABELS AND SIGNS

B. Self-Adhesive Warning Labels: Factory printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment, unless otherwise indicated.

C. Baked-Enamel Warning Signs: Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application. 1/4-inch grommets in corners for mounting. Nominal size, 7 by 10 inches.

D. Metal-Backed, Butyrate Warning Signs: Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch galvanized-steel backing; and with colors, legend, and size required for application. 1/4-inch grommets in corners for mounting. Nominal size, 10 by 14 inches.

E. Warning label and sign shall include, but are not limited to, the following legends:

1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."
2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."
3. Switchgear, Switchboards, Panelboards, etc, which are serviced/maintained while energized – provide Arch Flash and Shock hazard warning label per NEC 110.16 (2005NEC)

2.4 INSTRUCTION SIGNS

A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch thick for signs up to 20 sq. in. and 1/8 inch thick for larger sizes.

1. Engraved legend with black letters on white face.
2. Punched or drilled for mechanical fasteners.
3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.5 EQUIPMENT IDENTIFICATION LABELS

A. Label: Adhesive backed, with typed white letters on a dark-gray background. Minimum letter height shall be 3/8 inch.

2.6 ARC FLASH WARNING LABELS

A. The following types of electrical equipment located in manufacturing and commercial establishments (other than dwelling occupancies) must be field marked with a warning label if subject to examination, adjustment, service or maintenance while energized:

1. Switchboards
2. Panelboards
3. Industrial control panels
4. Meter socket enclosures
5. Motor control centers
B. The following is an example of an acceptable label (Brady), with 3.5”x5” overall dimensions. Labels must be able to withstand their usage environment. Print shall not fade, and adhesive should be aggressive enough to avoid peeling. The arc flash labels shall be printed on a durable polyester base that is over-laminated to protect the text and graphics. The back of the labels shall also employ an acrylic adhesive, which allows the labels to be securely and permanently affixed to a wide range of surfaces.

2.7 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Cable Ties: Fungus-inert, self-extinguishing, 1-piece, self-locking, Type 6/6 nylon cable ties.

2. Tensile Strength: 50 lb, minimum.
3. Temperature Range: Minus 40 to plus 185 deg F.

PART 3 - EXECUTION

3.1 APPLICATION

A. Accessible Raceways and Metal-Clad Cables More Than 600 V: Identify with "DANGER-HIGH VOLTAGE" in black letters at least 2 inches high, with self-adhesive vinyl labels. Repeat legend at 10-foot maximum intervals.

B. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits More Than [30 A] <Insert Current>: Identify with orange [self-adhesive vinyl label] [snap-around label] [self-adhesive vinyl tape applied in bands].

C. Accessible Raceways and Cables of Auxiliary Systems: Identify the following systems with color-coded, [self-adhesive vinyl tape applied in bands] [snap-around, color-coding bands]:

1. Fire Alarm System: Red.

D. Power-Circuit Conductor Identification: For primary and secondary conductors No. 1/0 AWG and larger in vaults, pull and junction boxes, manholes, and handholes use aluminum wraparound marker labels. Identify source and circuit number of each set of conductors. For single conductor cables, identify phase in addition to the above.
E. Branch-Circuit Conductor Identification: Where there are conductors for more than three branch circuits in same junction or pull box, use color-coding conductor tape. Identify each ungrounded conductor according to source and circuit number.

1. Equipment with Multiple Power or Control Sources: Apply to door or cover of equipment including, but not limited to, the following:

a. Power transfer switches.
b. Controls with external control power connections.

2. Equipment Requiring Workspace Clearance According to NFPA 70: Unless otherwise indicated, apply to door or cover of equipment but not on flush panelboards and similar equipment in finished spaces.

F. Instruction Signs:

1. Operating Instructions: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.

2. Emergency Operating Instructions: Install instruction signs with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions at equipment used for power transfer and/or load shedding.

G. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.

1. Labeling Instructions:

a. Indoor Equipment: Self-adhesive, engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where 2 lines of text are required, use labels 2 inches high.
b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.

2. Equipment to Be Labeled:

a. Panelboards, disconnect switches, electrical cabinets, and enclosures.
b. Access doors and panels for concealed electrical items.
c. Electrical switchgear and switchboards.
d. Transformers.
e. Electrical substations.
f. Emergency system boxes and enclosures.
g. Motor-control centers.
h. Disconnect switches.
IDENTIFICATION FOR ELECTRICAL SYSTEMS

i. Enclosed circuit breakers.
j. Motor starters.
k. Push-button stations.
l. Power transfer equipment.
m. Contactors.
n. Remote-controlled switches, dimmer modules, and control devices.
o. Battery inverter units.
p. Battery racks.
q. Power-generating units.
r. Voice and data cable terminal equipment.
s. Master clock and program equipment.
t. Intercommunication and call system master and staff stations.
u. Television/audio components, racks, and controls.
v. Fire-alarm control panel and annunciators.
w. Security and intrusion-detection control stations, control panels, terminal cabinets, and racks.
x. Monitoring and control equipment.
y. Uninterruptible power supply equipment.
z. Terminals, racks, and patch panels for voice and data communication and for signal and control functions.

3.2 INSTALLATION

A. Verify identity of each item before installing identification products.

B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.

C. Apply identification devices to surfaces that require finish after completing finish work.

D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

E. Color-Coding for Phase and Voltage Level Identification, 600 V and Less: Use the colors listed below for ungrounded service, feeder, and branch-circuit conductors.

1. Color shall be factory applied or, for sizes larger than No. 10 AWG if authorities having jurisdiction permit, field applied.
2. Colors for 208/120-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
 c. Phase C: Blue.
3. Colors for 480/277-V Circuits:
 b. Phase B: Orange.
 c. Phase C: Yellow.
4. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

F. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.

G. Underground-Line Warning Tape: During backfilling of trenches install continuous underground-line warning tape directly above line at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.

H. Painted Identification: Prepare surface and apply paint according to Division 09 painting Sections.

END OF SECTION 260553
SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Lighting and appliance branch-circuit panelboards.

1.3 SUBMITTALS

A. Product Data: For each type of panelboard, switching and overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.

B. Shop Drawings: For each panelboard and related equipment.
 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
 3. Detail bus configuration, current, and voltage ratings.
 4. Short-circuit current rating of panelboards and overcurrent protective devices.
 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 6. Include wiring diagrams for power, signal, and control wiring.

C. Field Quality-Control Reports:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

D. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.
1.4 QUALITY ASSURANCE

A. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA PB 1.

D. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PANELBOARDS

A. Enclosures: Flush- and surface-mounted cabinets.
 1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R.
 2. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.
 3. Finishes:
 a. Panels and Trim: Steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.

B. Phase, Neutral, and Ground Buses:
 2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
 3. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
 4. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and UL listed as Conductor Connectors: Suitable for use with conductor material and sizes.

2.2 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, [available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following]:

B. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

C. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.

E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

F. Column-Type Panelboards: Narrow gutter extension, with cover, to overhead junction box equipped with ground and neutral terminal buses.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine panelboards before installation. Reject panelboards that are damaged or rusted or have been subjected to water saturation.

B. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Mount top of trim 90 inches above finished floor unless otherwise indicated.

B. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

C. Install overcurrent protective devices and controllers not already factory installed.

1. Set field-adjustable, circuit-breaker trip ranges.

D. Install filler plates in unused spaces.

E. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.

F. Arrange conductors in gutters into groups and bundle and wrap with wire ties.
3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Division 26 Section "Identification for Electrical Systems."

B. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Acceptance Testing Preparation:
 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

C. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

D. Panelboards will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable component to function smoothly, and lubricate as recommended by manufacturer.

END OF SECTION 262416
SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 2. Twist-locking receptacles.
 3. Receptacles with integral surge suppression units.
 5. Isolated-ground receptacles.
 6. Hospital-grade receptacles.
 7. Snap switches and wall-box dimmers.
 8. Solid-state fan speed controls.
 9. Wall-switch and exterior occupancy sensors.
 10. Communications outlets.
 12. Cord and plug sets.
 13. Floor service outlets, poke-through assemblies, service poles, and multioutlet assemblies.

B. Related Sections include the following:
 1. Division 27 Section "Communications Horizontal Cabling" for workstation outlets.

1.3 DEFINITIONS

A. EMI: Electromagnetic interference.

B. GFCI: Ground-fault circuit interrupter.

C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.

D. RFI: Radio-frequency interference.

E. TVSS: Transient voltage surge suppressor.

F. UTP: Unshielded twisted pair.
1.4 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

C. Samples: One for each type of device and wall plate specified, in each color specified.

D. Field quality-control test reports.

E. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing label warnings and instruction manuals that include labeling conditions.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain each type of wiring device and associated wall plate through one source from a single manufacturer. Insofar as they are available, obtain all wiring devices and associated wall plates from a single manufacturer and one source.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NFPA 70.

1.6 COORDINATION

A. Receptacles for Owner-Furnished Equipment: Match plug configurations.

1. Cord and Plug Sets: Match equipment requirements.

1.7 EXTRA MATERIALS

A. Furnish extra materials described in subparagraphs below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Service/Power Poles: One for every 10, but no fewer than one.
2. Floor Service Outlet Assemblies: One for every 10, but no fewer than one.
3. Poke-Through, Fire-Rated Closure Plugs: One for every five floor service outlets installed, but no fewer than two.
4. TVSS Receptacles: One for every 10 of each type installed, but no fewer than two of each type.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers' Names: Shortened versions (shown in parentheses) of the following manufacturers' names are used in other Part 2 articles:

1. Cooper Wiring Devices; a division of Cooper Industries, Inc. (Cooper).
2. Hubbell Incorporated; Wiring Device-Kellems (Hubbell).
4. Pass & Seymour/Legrand; Wiring Devices & Accessories (Pass & Seymour).

2.2 STRAIGHT BLADE RECEPTACLES

A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 5351 (single), 5352 (duplex).
 b. Hubbell; HBL5351 (single), CR5352 (duplex).
 c. Leviton; 5891 (single), 5352 (duplex).
 d. Pass & Seymour; 5381 (single), 5352 (duplex).

B. Hospital-Grade, Duplex Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498 Supplement SD.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 8300 (duplex).
 b. Hubbell; HBL8310 (single), HBL8300H (duplex).
 c. Leviton; 8310 (single), 8300 (duplex).
 d. Pass & Seymour; 9301-HG (single), 9300-HG (duplex).

C. Isolated-Ground, Duplex Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Hubbell; CR 5253IG.
 b. Leviton; 5362-IG.
 c. Pass & Seymour; IG6300.
 2. Description: Straight blade; equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

D. Tamper-Resistant Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration 5-20R, and UL 498.
 1. Products: Subject to compliance with requirements, provide one of the following:
a. Cooper; TR8300.
b. Hubbell; HBL8300SG.
c. Leviton; 8300-SGG.
d. Pass & Seymour; 63H.

2. Description: Labeled to comply with NFPA 70, "Health Care Facilities" Article, "Pediatric Locations" Section.

2.3 GFCI RECEPTACLES

A. General Description: Straight blade, feed-through type. Comply with NEMA WD 1, NEMA WD 6, UL 498, and UL 943, Class A, and include indicator light that is lighted when device is tripped.

B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; GF20.
 b. Pass & Seymour; 2084.

C. Hospital-Grade, Duplex GFCI Convenience Receptacles, 125 V, 20 A: Comply with UL 498 Supplement SD.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; HGF20.
 b. Hubbell; HGF8300.
 c. Leviton; 6898-HG.
 d. Pass & Seymour; 2091-SHG.

2.4 TVSS RECEPTACLES

A. General Description: Comply with NEMA WD 1, NEMA WD 6, UL 498, and UL 1449, with integral TVSS in line to ground, line to neutral, and neutral to ground.

1. TVSS Components: Multiple metal-oxide varistors; with a nominal clamp-level rating of 400 volts and minimum single transient pulse energy dissipation of 240 J, according to IEEE C62.41.2 and IEEE C62.45.
2. Active TVSS Indication: Visual, with light visible in face of device to indicate device is "active" or "no longer in service."

B. Duplex TVSS Convenience Receptacles:
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 5362BLS.
 b. Hubbell; HBL5362SA.
 c. Leviton; 5380.

2. Description: Straight blade, 125 V, 20 A; NEMA WD 6 configuration 5-20R.

C. Isolated-Ground, Duplex Convenience Receptacles:

WIRING DEVICES
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; IG5362BLS.
 b. Hubbell; IG5362SA.
 c. Leviton; 5380-IG.

2. Description: Straight blade, 125 V, 20 A; NEMA WD 6 configuration 5-20R. Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

D. Hospital-Grade, Duplex Convenience Receptacles: Comply with UL 498 Supplement SD.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 8300BLS.
 b. Hubbell; HBL8362SA.
 c. Leviton; 8380.

2. Description: Straight blade, 125 V, 20 A; NEMA WD 6 configuration 5-20R.

E. Isolated-Ground, Hospital-Grade, Duplex Convenience Receptacles:
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; IG8300HGBLS.
 b. Hubbell; IG8362SA.
 c. Leviton; 8380-IG.

2. Description: Straight blade, 125 V, 20 A; NEMA WD 6 configuration 5-20R. Comply with UL 498 Supplement SD. Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.5 HAZARDOUS (CLASSIFIED) LOCATION RECEPTACLES

A. Wiring Devices for Hazardous (Classified) Locations: Comply with NEMA FB 11 and UL 1010.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cooper Crouse-Hinds.
 b. EGS/Appleton Electric.
 c. Killark; a division of Hubbell Inc.

2.6 TWIST-LOCKING RECEPTACLES

A. Single Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 configuration L5-20R, and UL 498.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; L520R.
 b. Hubbell; HBL2310.
 c. Leviton; 2310.
 d. Pass & Seymour; L520-R.

B. Isolated-Ground, Single Convenience Receptacles, 125 V, 20 A:
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Hubbell; IG2310.
 b. Leviton; 2310-IG.
 2. Description: Comply with NEMA WD 1, NEMA WD 6 configuration L5-20R, and UL 498. Equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.7 PENDANT CORD-CONNECTOR DEVICES

A. Description: Matching, locking-type plug and receptacle body connector; NEMA WD 6 configurations L5-20P and L5-20R, heavy-duty grade.
 2. External Cable Grip: Woven wire-mesh type made of high-strength galvanized-steel wire strand, matched to cable diameter, and with attachment provision designed for corresponding connector.

2.8 CORD AND PLUG SETS

A. Description: Match voltage and current ratings and number of conductors to requirements of equipment being connected.
 1. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and equipment-rating ampacity plus a minimum of 30 percent.

2.9 SNAP SWITCHES

A. Comply with NEMA WD 1 and UL 20.

B. Switches, 120/277 V, 20 A:
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 2221 (single pole), 2222 (two pole), 2223 (three way), 2224 (four way).
b. Hubbell; CS1221 (single pole), CS1222 (two pole), CS1223 (three way), CS1224 (four way).

c. Leviton; 1221-2 (single pole), 1222-2 (two pole), 1223-2 (three way), 1224-2 (four way).

d. Pass & Seymour; 20AC1 (single pole), 20AC2 (two pole), 20AC3 (three way), 20AC4 (four way).

C. Pilot Light Switches, 20 A:
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 2221PL for 120 V and 277 V.
 b. Hubbell; HPL1221PL for 120 V and 277 V.
 c. Leviton; 1221-PLR for 120 V, 1221-7PLR for 277 V.
 d. Pass & Seymour; PS20AC1-PLR for 120 V.
2. Description: Single pole, with neon-lighted handle, illuminated when switch is "ON."

D. Key-Operated Switches, 120/277 V, 20 A:
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 2221L.
 b. Hubbell; HBL1221L.
 c. Leviton; 1221-2L.
 d. Pass & Seymour; PS20AC1-L.
2. Description: Single pole, with factory-supplied key in lieu of switch handle.

E. Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors.
1. Products: Subject to compliance with requirements, provide one of the following:
 b. Hubbell; HBL1557.
 c. Leviton; 1257.
 d. Pass & Seymour; 1251.

F. Key-Operated, Single-Pole, Double-Throw, Momentary Contact, Center-Off Switches, 120/277 V, 20 A; for use with mechanically held lighting contactors, with factory-supplied key in lieu of switch handle.
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Cooper; 1995L.
 b. Hubbell; HBL1557L.
 c. Leviton; 1257L.
 d. Pass & Seymour; 1251L.

2.10 WALL-BOX DIMMERS

A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.
B. Control: Continuously adjustable slider; with single-pole or three-way switching. Comply with UL 1472.

C. Incandescent Lamp Dimmers: 120 V; control shall follow square-law dimming curve. On-off switch positions shall bypass dimmer module.
 1. 600 W; dimmers shall require no derating when ganged with other devices.

D. Fluorescent Lamp Dimmer Switches: Modular; compatible with dimmer ballasts; trim potentiometer to adjust low-end dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.11 FAN SPEED CONTROLS

A. Modular, 120-V, full-wave, solid-state units with integral, quiet on-off switches and audible frequency and EMI/RFI filters. Comply with UL 1917.
 1. Continuously adjustable slider, 5 A.
 2. Three-speed adjustable slider, 1.5 A.

2.12 OCCUPANCY SENSORS

A. Wall-Switch Sensors:
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Hubbell; AT120 for 120 V, AT277 for 277 V.
 b. Leviton; ODS 15-ID.
 c. Watt Stopper (The): WA-200, WA-300
 2. Description: Adaptive-technology type, 120/277 V, adjustable time delay up to 20 minutes, 180-degree field of view, with a minimum coverage area of 900 sq. ft..

B. Long-Range Wall Sensors:
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Hubbell; ATD1600WRP.
 b. Leviton; ODW12-MRW.
 c. Watt Stopper (The); DT-200.
 2. Description: Dual technology, with both passive-infrared- and ultrasonic-type sensing, 120/277 V, adjustable time delay up to 30 minutes, 110-degree field of view, and a minimum coverage area of 1200 sq. ft..

C. Wide-Range Wall Sensors:
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Hubbell; ATP120HBRP.
 b. Leviton; ODWHB-IRW.
 c. Pass & Seymour; HS1001.
 d. Watt Stopper (The); CX-100-3.
2. Description: Passive-infrared type, 120/277 V, adjustable time delay up to 30 minutes, 150-degree field of view, with a minimum coverage area of 1200 sq. ft..

D. Exterior Occupancy Sensors:
1. Products: Subject to compliance with requirements, provide one of the following:
 a. Leviton; PS200-10.
 b. Watt Stopper (The); EW-100-120.

2. Description: Passive-infrared type, 120/277 V, weatherproof, adjustable time delay up to 15 minutes, 180-degree field of view, and 110-foot detection range. Minimum switch rating: 1000-W incandescent, 500-VA fluorescent.

2.13 COMMUNICATIONS OUTLETS

A. Telephone Outlet:
1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 a. Cooper; 3560-6.
 b. Leviton; 40649.

2. Description: Single RJ-45 jack for terminating 100-ohm, balanced, four-pair UTP; TIA/EIA-568-B.1; complying with Category 5e. Comply with UL 1863.

B. Combination TV and Telephone Outlet:
1. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:
 a. Cooper; 3562.
 b. Leviton; 40595.

2. Description: Single RJ-45 jack for 100-ohm, balanced, four-pair UTP; TIA/EIA-568-B.1; complying with Category 5e; and one Type F coaxial cable connector.

2.14 WALL PLATES

A. Single and combination types to match corresponding wiring devices.

1. Plate-Securing Screws: Metal with head color to match plate finish.
3. Material for Damp Locations: Thermoplastic with spring-loaded lift cover, and listed and labeled for use in "wet locations."

B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with type 3R weather-resistant thermoplastic with lockable cover.
2.15 FLOOR SERVICE FITTINGS

A. Type: Modular, flush-type, multi service units suitable for wiring method used. Wiremold Series RFB2 (up to two device plates) or Series RFB4 (up to four device plates). Or Engineer Approved Equal

B. Compartments: Barrier separates power from voice and data communication cabling.

 1. Catalog Numbers (Wiremold):
 a. FP – X – YY – ZZ
 1) X options are
 a) B for blank top
 b) C for cutout top
 c) FF for furniture feed
 2) YY options are
 a) TC for tile or carpet
 3) ZZ options are
 a) NK – Nickel
 b) BS – Brass
 c) BK – Black
 d) BZ – Bronze
 e) GY – Grey
 f) AL – Brushed Aluminum

D. Power Receptacle: NEMA WD 6 configuration 5-20R, gray finish, unless otherwise indicated.

E. Voice and Data Communication Outlet:

2.16 POKE-THROUGH ASSEMBLIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Hubbell Incorporated; Wiring Device-Kellems.
 2. Pass & Seymour/Legrand; Wiring Devices & Accessories.
 3. Square D/ Schneider Electric.
 4. Thomas & Betts Corporation.
 5. Wiremold Company (The).
 6. Size: Selected to fit nominal [3-inch] [4-inch] cored holes in floor and matched to floor thickness.
 7. Fire Rating: Unit is listed and labeled for fire rating of floor-ceiling assembly.
 8. Closure Plug: Arranged to close unused [3-inch] [4-inch] cored openings and reestablish fire rating of floor.
 9. Wiring Raceways and Compartments: For a minimum of four No. 12 AWG conductors and a minimum of [two] [four], 4-pair, Category 5e voice and data communication cables.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1.

B. Coordination with Other Trades:
 1. Take steps to insure that devices and their boxes are protected. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of the boxes.
 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:
 1. Do not strip insulation from conductors until just before they are spliced or terminated on devices.
 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
 4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailing existing conductors is permitted provided the outlet box is large enough.

D. Device Installation:
 1. Replace all devices that have been in temporary use during construction or that show signs that they were installed before building finishing operations were complete.
 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, 2/3 to 3/4 of the way around terminal screw.
 6. Use a torque screwdriver when a torque is recommended or required by the manufacturer.
 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
 8. Tighten unused terminal screws on the device.
 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device mounting screws in yokes, allowing metal-to-metal contact.
E. Receptacle Orientation:

1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the left.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Dimmers:

1. Install dimmers within terms of their listing.
2. Verify that dimmers used for fan speed control are listed for that application.
3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers’ device listing conditions in the written instructions.

H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on bottom. Group adjacent switches under single, multigang wall plates.

I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 IDENTIFICATION

A. Comply with Division 26 Section "Identification for Electrical Systems."

1. Receptacles: Identify panelboard and circuit number from which served. Use hot, stamped or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

1. In healthcare facilities, prepare reports that comply with recommendations in NFPA 99.
2. Test Instruments: Use instruments that comply with UL 1436.
3. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated LED indicators of measurement.

B. Tests for Convenience Receptacles:

1. Line Voltage: Acceptable range is 105 to 132 V.
2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is not acceptable.
3. Ground Impedance: Values of up to 2 ohms are acceptable.
4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
5. Using the test plug, verify that the device and its outlet box are securely mounted.
6. The tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.
C. Test straight blade convenience outlets in patient-care areas for the retention force of the grounding blade according to NFPA 99. Retention force shall be not less than 4 oz..

END OF SECTION 262726
SECTION 262813 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Cartridge fuses rated 600-V ac and less for use in control circuits enclosed switches enclosed controllers.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include construction details, material, dimensions, descriptions of individual components, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:

B. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:

1. Ambient temperature adjustment information.
2. Current-limitation curves for fuses with current-limiting characteristics.

1.4 QUALITY ASSURANCE

A. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA FU 1 for cartridge fuses.

D. Comply with NFPA 70.

E. Comply with UL 248-11 for plug fuses.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cooper Bussmann, Inc.
2. Edison Fuse, Inc.
3. Ferraz Shawmut, Inc.
4. Littelfuse, Inc.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.

B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.

C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.

D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

A. Cartridge Fuses:
 1. Motor Branch Circuits: Class RK1, time delay.
 2. Control Circuits: Class CC, time delay.

3.3 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.
3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems" and indicating fuse replacement information on inside door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 262813
SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Fusible switches.
 2. Molded-case circuit breakers (MCCBs).
 3. Enclosures.

1.3 PERFORMANCE REQUIREMENTS

1.4 SUBMITTALS
 A. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.
 1. Wiring Diagrams: For power, signal, and control wiring.
 B. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.

1.5 QUALITY ASSURANCE
 A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.
 B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
 C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
D. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.
5.

B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate indicated fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

2.2 MOLDED-CASE, SOLID STATE TRIP UNIT CIRCUIT BREAKERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.

C. Electronic Trip Circuit Breaker Trip Unit: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:

1. Instantaneous trip.
2. Long- and short-time pickup levels.
3. Long- and short-time time adjustments.

D. Features and Accessories:

1. Standard frame sizes, trip ratings, and number of poles.
2. Shunt Trip Accessory – 120VAC coil voltage

2.3 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
2. Outdoor Locations: NEMA 250, Type 3R.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

B. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

C. Install fuses in fusible devices.

D. Comply with NECA 1.

3.3 IDENTIFICATION

A. Comply with requirements in Division 26 Section "Identification for Electrical Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.

2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Acceptance Testing Preparation:

1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.

2. Test continuity of each circuit.

D. Tests and Inspections:
1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.

2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

3. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

E. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges.

END OF SECTION 262816
SECTION 262913 - ENCLOSED CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes the following enclosed controllers rated 600 V and less:
 1. Full-voltage magnetic.

B. Related Section:

1.3 SUBMITTALS

A. Product Data: For each type of enclosed controller. Include manufacturer's technical data on features, performance, electrical characteristics, ratings, and enclosure types and finishes.

B. Shop Drawings: For each enclosed controller. Include dimensioned plans, elevations, sections, details, and required clearances and service spaces around controller enclosures.

 1. Show tabulations of the following:
 a. Each installed unit's type and details.
 b. Factory-installed devices.
 c. Nameplate legends.
 d. Short-circuit current rating of integrated unit.

PART 2 - PRODUCTS

2.1 FULL-VOLTAGE CONTROLLERS

A. General Requirements for Full-Voltage Controllers: Comply with NEMA ICS 2, general purpose, Class A.

B. Motor-Starting Switches: "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off or on.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
ENCLOSED CONTROLLERS

d. Siemens Energy & Automation, Inc.
e. Square D; a brand of Schneider Electric.

2. Configuration: Nonreversing.
3. Surface mounting.

C. Fractional Horsepower Manual Controllers: "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off, on, or tripped.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 d. Siemens Energy & Automation, Inc.
 e. Square D; a brand of Schneider Electric.

2. Overload Relays: Inverse-time-current characteristics; NEMA ICS 2, Class 10 tripping characteristics; heaters matched to nameplate full-load current of actual protected motor; external reset push button; bimetallic type.
3. Surface mounting.

D. Integral Horsepower Manual Controllers: "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off, on, or tripped.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 d. Siemens Energy & Automation, Inc.
 e. Square D; a brand of Schneider Electric.

2. Overload Relays: Inverse-time-current characteristics; NEMA ICS 2, Class 10 tripping characteristics; heaters and sensors in each phase, matched to nameplate full-load current of actual protected motor and having appropriate adjustment for duty cycle; external reset push button; bimetallic type.
3. Surface mounting.

E. Combination Magnetic Controller: Factory-assembled combination of magnetic controller, OCPD, and disconnecting means.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton Electrical Inc.; Cutler-Hammer Business Unit.

d. Siemens Energy & Automation, Inc.

e. Square D; a brand of Schneider Electric.

2. Fusible Disconnecting Means:
 a. NEMA KS 1, heavy-duty, horsepower-rated, fusible switch with clips or bolt pads to accommodate Class J fuses.
 b. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.

3. Auxiliary Contacts: N.O./N.C., arranged to activate before switch blades open.

2.2 ENCLOSURES

A. Enclosed Controllers: NEMA ICS 6, to comply with environmental conditions at installed location.
 1. Dry and Clean Indoor Locations: Type 1.
 2. Outdoor Locations: Type 3R.

2.3 ACCESSORIES

A. General Requirements for Control Circuit and Pilot Devices: NEMA ICS 5; factory installed in controller enclosure cover unless otherwise indicated.
 1. Push Buttons, Pilot Lights, and Selector Switches: Heavy-duty
 a. Push Buttons: Recessed types
 b. Pilot Lights: LED types
 c. Selector Switches types

B. Control Relays: Auxiliary and adjustable – solid state type

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and surfaces to receive enclosed controllers, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.

B. Examine enclosed controllers before installation. Reject enclosed controllers that are wet, moisture damaged, or mold damaged.

C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Wall-Mounted Controllers: Install enclosed controllers on walls with tops at uniform height unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Division 26 Section "Hangers and Supports for Electrical Systems."

B. Install fuses in each fusible-switch enclosed controller.

C. Install fuses in control circuits if not factory installed. Comply with requirements in Division 26 Section "Fuses."

D. Install heaters in thermal overload relays. Select heaters based on actual nameplate full-load amperes after motors have been installed.

E. Install, connect, and fuse thermal-protector monitoring relays furnished with motor-driven equipment.

F. Comply with NECA 1.

3.3 IDENTIFICATION

A. Identify enclosed controllers, components, and control wiring. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 2. Label each enclosure with engraved nameplate.
 3. Label each enclosure-mounted control and pilot device.

3.4 CONTROL WIRING INSTALLATION

A. Bundle, train, and support wiring in enclosures.

B. Connect selector switches and other automatic-control selection devices where applicable.

 1. Connect selector switches to bypass only those manual- and automatic-control devices that have no safety functions when switch is in manual-control position.
 2. Connect selector switches with enclosed-controller circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Acceptance Testing Preparation:
1. Test insulation resistance for each enclosed controller, component, connecting supply, feeder, and control circuit.

2. Test continuity of each circuit.

D. Tests and Inspections:

1. Inspect controllers, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.

2. Test insulation resistance for each enclosed-controller element, component, connecting motor supply, feeder, and control circuits.

3. Test continuity of each circuit.

4. Verify that voltages at controller locations are within plus or minus 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Owner before starting the motor(s).

5. Test each motor for proper phase rotation.

7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

8. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

E. Enclosed controllers will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports including a certified report that identifies enclosed controllers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING

A. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.

B. Adjust overload-relay heaters or settings if power factor correction capacitors are connected to the load side of the overload relays.

C. Adjust the trip settings of MCPs and thermal-magnetic circuit breakers with adjustable instantaneous trip elements. Initially adjust to six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Owner before increasing settings.

D. Set field-adjustable circuit-breaker trip ranges
3.7 PROTECTION

A. Replace controllers whose interiors have been exposed to water or other liquids prior to Substantial Completion.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain enclosed controllers.

END OF SECTION 262913
SECTION 262923 VARIABLE FREQUENCY MOTOR CONTROLLERS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes solid-state, PWM, VFCs for speed control of three-phase, squirrel-cage induction motors.

B. The VFC’s furnished under this specification shall:
 1. To be factory mounted on air handling equipment and other mechanical equipment, furnished under Division 23.
 2. Installed in the air stream of the Air Handlers. Shipped loose to be field installed for all other installations.

1.03 DEFINITIONS

A. BMS: Building management system.

B. IGBT: Integrated gate bipolar transistor.

C. LAN: Local area network.

D. PID: Control action, proportional plus integral plus derivative.

E. PWM: Pulse-width modulated.

F. VFC: Variable frequency controller.

1.04 SUBMITTALS

A. Product Data: For each type of VFC. Include dimensions, mounting arrangements, location for conduit entries, shipping and operating weights, and manufacturer's technical data on features, performance, electrical ratings, characteristics, and finishes.

B. Shop Drawings: For each VFC.
 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following:
a. Each installed unit's type and details.
b. Nameplate legends.
c. Short-circuit current rating of integrated unit.
d. Features, characteristics, ratings, and factory settings of each motor-control center unit.

3. Wiring Diagrams: Power, signal, and control wiring for VFCs. Provide schematic wiring diagram for each type of VFC.

C. Coordination Drawings: Floor plans, drawn to scale, showing dimensioned layout, required working clearances, and required area above and around VFCs where pipe and ducts are prohibited. Show VFC layout and relationships between electrical components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate field measurements.

D. Qualification Data: For manufacturer.

E. Field quality-control test reports.

F. Operation and Maintenance Data: For VFCs, all installed devices, and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
1. Routine maintenance requirements for VFCs and all installed components.
2. Manufacturer's written instructions for testing and adjusting over current protective devices.

G. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed and arrange to demonstrate that dip switch settings for motor running overload protection suit actual motor to be protected.

H. Submit specification compliance analysis report:
1. Address each paragraph of the specification by indicating COMPLY or EXCEPTION.
2. Do not indicate COMPLY unless the proposed equipment or system exactly meets the paragraph requirement.
3. If EXCEPTION is indicated, provide a clear and concise explanation of the variance from the specifications and the effect this has on the specified performance.
4. Engineer retains the right to accept or deny any listed EXCEPTIONS to the specification.
5. Report should be type written for clarity but hand written margins notes shall be acceptable so long as they are legible.
1.05 QUALITY ASSURANCE

A. Manufacturer Qualifications: A qualified manufacturer. Maintain, within 250 miles of Project site, a service center capable of providing training, parts, and emergency maintenance and repairs. Project site in Pittsburgh, PA.

B. Source Limitations: Obtain VFCs of a single type through one source from a single manufacturer.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

D. Comply with NFPA 70.

E. Product Selection for Restricted Space: Drawings indicate maximum dimensions for mechanical equipment. The VFCs, shall be factory installed and conform to the maximum dimensions/footprint of the mechanical equipment. Comply with indicated maximum dimensions and clearances.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Store VFCs indoors in clean, dry space with uniform temperature to prevent condensation. Protect VFCs from exposure to dirt, fumes, water, corrosive substances, and physical damage.

B. Contract price included delivery to the project site.

1.07 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation, capable of driving full load without derating, under the following conditions, unless otherwise indicated:
 1. Ambient Temperature: 0 to 40 deg C.
 2. Humidity: Less than 90 percent (noncondensing).
 3. Altitude: Not exceeding 1400 feet.

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for VFCs, including clearances between VFCs, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

1.08 COORDINATION

A. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate features of VFCs, installed units, and accessory devices with pilot devices and control circuits to which they connect.
C. Coordinate features, accessories, and functions of each VFC and each installed unit with ratings and characteristics of supply circuit, motor, required control sequence, and duty cycle of motor and load.

1.09 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1.
 2. Spare Fuses: Furnish one spare for every five installed, but no fewer than one set of three of each type and rating.
 3. Indicating Lights: Two of each type installed.

1.10 WARRANTY

A. Special Warranty: Manufacturer’s standard form in which manufacturer agrees to repair or replace VFCs that fail in materials or workmanship within specified warranty period.
 1.
 2. Warranty Period: Five years from date of Substantial Completion.
 3.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1.
 2. Ceres
 3. Mitsubishi
 4. Dan Foss
 5. ABB
 6. No other manufacturers allowed.

2.2 VARIABLE FREQUENCY CONTROLLERS

A. Where shown on the drawings, adjustable frequency drives 1 through 2000 Horsepower (HP) Variable Torque (VT) shall have the following features:
 1.
 2. The VFCs shall be rated for 480. The VFC shall provide microprocessor based control for three-phase induction motors. The controller’s full load output current rating shall be based on Variable Torque application at 40° C ambient and 1-16 kHz switching frequency below 50 HP and 1-10 kHz 50 HP and above to reduce motor noise and avoid increased motor losses.
 3. The VFC shall be of the Pulse Width Modulated (PWM) design converting the utility input voltage and frequency to a variable voltage and frequency output via
a two-step operation. Adjustable Current Source VFC is not accepted. Insulated Gate Bipolar Transistors (IGBT’s) shall be used in the inverter section. Bipolar Junction Transistors, GTO’s or SCR’s are not accepted. The VFC shall run at the above listed switching frequencies.

4. The VFC shall have an efficiency at full load and speed that exceeds 95% for VFC below 15 HP and 97% for drives 15 HP and above. The efficiency shall exceed 90% at 50% speed and load.

5. The VFC shall maintain a minimum line side displacement power factor of 0.96, regardless of speed and load.

6. The VFC shall have a one (1) minute overload current rating of 110% for variable torque applications.

7. Provide extended junction/terminated boxes as a factory installed option.

B. The VFC shall be capable of operating any NEMA design B squirrel cage induction motor, regardless of manufacturer, with a horsepower and current rating within the capacity of the VFC.

C. The VFC shall have an integral EMI/RFI filter as standard.

D. The VFC shall limit harmonic distortion reflected onto the utility system to voltage and current levels as defined by IEEE 519-1992 for general systems applications the point of common coupling (PCC) shall be where the utility main connects with the building. As a minimum all VFC’s shall have a 3% line reactor or DC buss reactor included. All VFC’s over 10 HP shall be designed to limit harmonic distortion to <5% VTHD and <15% ITHD at the VFC’s input terminal. This can be accomplished with filters or multi-pulse VFC’s. Single active filters correcting multiple VFC’s at a single location are not acceptable. Testing at the PCC will be required to insure that the combined loads still remain within IEEE 519-1992 guidelines for the entire installation.

E. The VFC shall be able to start into a spinning motor. The VFC shall be able to determine the motor speed in any direction and resume operation without tripping. If the motor is spinning in the reverse direction, the VFC shall start into the motor in the reverse direction, bring the motor to a controlled stop, and then accelerate the motor to the preset speed.

F. Standard operating conditions shall be:
 1. Incoming Power: Three-phase, 480 volts (+10% to -15%) and 50/60 Hz (+/-5 Hz) power to a fixed potential DC bus level.
 2. Frequency stability of +/-0.05% for 24 hours with voltage regulation of +/-1% of maximum rated output voltage.
 3. Speed regulation of +/- 0.5% of base speed.
 4. Load inertia dependent carryover (ride through) during utility loss.
 5. Insensitive to input line rotation.
 6. Humidity: 0 to 95% (non-condensing and non-corrosive).
 7. Altitude: 0 to 3,300 feet (1000 meters) above sea level.
 8. Ambient Temperature: -10 to 40 °C (VT).
 9. Storage Temperature: -40 to 70 °C.
G. Control Functions

1. Frequently accessed VFC programmable parameters shall be adjustable from a digital operator keypad located on the front of the VFC. The VFC shall have a 3 line alphanumeric programmable display with status indicators. Keypads must use plain English words for parameters, status, and diagnostic messages. Keypads that are difficult to read or understand are not accepted, and particularly those that use alphanumeric code and tables. Keypads shall be adjustable for contrast with large characters easily visible in normal ambient light.

2. The keypad shall include a Hand-Off-Auto membrane selection to allow for direct control of the VFC from the keypad.

3. The keypad shall have copy / paste capability.

4. Standard advanced programming and trouble-shooting functions shall be available by using a personal computer’s RS-232 port and Windows™ based software. In addition the software shall permit control and monitoring via the VFC’s RS232 port. The manufacturer shall supply a diskette with the required software. An easily understood instruction manual and software help screens shall also be provided.

5. The computer software shall be used for modifying the drive setup and reviewing diagnostic and trend information as outlined in this section through Section 18.

7. The operator shall be able to scroll through the keypad menu to choose between the following:
 a.
 b.
 c.
 d. Parameter Menu
 e. Keypad Control
 f. System Menu
 g. Expander Boards
 h. Monitoring Menu
 i. Operate Menu

8.

9. The following setups and adjustments, at a minimum, are to be available:
 a.
 b. Start command from keypad, remote or communications port
 c. Speed command from keypad, remote or communications port
 d. Motor direction selection
 e. Maximum and minimum speed limits
 f. Acceleration and deceleration times, two settable ranges
 g. Critical (skip) frequency avoidance
 h. Torque limit
 i. Multiple attempt restart function
 j. Multiple preset speeds adjustment
 k. Catch a spinning motor start or normal start selection
 l. Programmable analog output

H. The VFC shall have the following system interfaces:

1.
2. Inputs – A minimum of six (6) programmable digital inputs, two (2) analog inputs and serial communications interface shall be provided with the following available as a minimum:
 a. Remote manual/auto
 b. Remote start/stop
 c. Remote forward/reverse
 d. Remote preset speeds
 e. Remote external trip
 f. Remote fault reset
 g. Process control speed reference interface, 4-20mA DC
 i. Potentiometer or process control speed reference interface, 0-10VDC
 a. RS-232 programming and operation interface port

4. Outputs – A minimum of two (2) discrete programmable digital outputs, one (1) programmable open collector output, and one (1) programmable analog output shall be provided, with the following available at minimum.
 a. Programmable relay outputs with one (1) set of Form C contacts for each, selectable with the following available at minimum:
 1) Fault
 2) Run
 3) Ready
 4) Reversing
 5) Jogging
 6) At speed
 7) In torque limit
 8) Over-temperature
 c. Programmable open collector output with available 24 Vdc power supply and selectable with the following available at minimum:
 1) Fault
 2) Run
 3) Ready
 4) Reversing
 5) Jogging
 6) At speed
 7) In torque limit
 8) Over-temperature
 e. Programmable analog output signal, selectable with the following available at minimum:
 1) Output frequency
 2) Frequency reference
 3) Motor speed
 4) Output current
5) Motor torque
6) Motor power
7) Motor voltage
8) DC link voltage

6.

7. Capability of two additional expandable I/O interface cards. Upon installation, software shall automatically identify the interface card and activate the appropriate parameters. This should be done without adding any new software.

I. Monitoring and Displays

1.

2. The VFC display shall be a LCD type capable of displaying three (3) lines of text and the following thirteen (13) status indicators:
 a. Run
 b. Forward
 c. Reverse
 d. Stop
 e. Ready
 f. Alarm
 g. Fault
 h. Input/Output (I/O) Terminal
 i. Keypad
 j. Bus/communication
 k. Hand
 l. Auto
 m. Off

3.

4. The VFC keypad shall be capable of displaying the following monitoring functions at a minimum:
 a. Motor Speed (RPM and %)
 b. Frequency reference
 c. Output frequency
 d. Motor current
 e. Motor torque
 f. Motor power
 g. Motor voltage
 h. DC-link voltage
 i. Heat sink temperature
 j. Motor run time (re-settable)
 k. Total operating days counter
 l. Operating hours (re-settable)
 m. Total megawatt hours
 n. Megawatt hours (re-settable)
 o. Voltage level of analog input
 p. Current level of analog input
 r. Digital inputs status
s. Digital and relay outputs status
t. Motor temperature rise
u. PID references

J. Protective Functions
1.
2. The VFC shall include the following protective features at minimum:
 a. Over-current
c. Over-voltage
d. System fault
e. Under-voltage
f. Input line supervision
g. Output phase supervision
h. Over-temperature
i. Motor stalled
j. Motor under-load
k. Logic voltage failure
l. Microprocessor failure
m. Brake chopper supervision
n. DC Injection braking
3.
4. The VFC shall provide ground fault protection during power-up, starting, and running. VFC with no ground fault protection during running are not accepted.

K. Diagnostic Features
1.
2. Active Faults
3. The last 8 faults shall be recorded and stored in sequential order
4. Fault code and description of fault shall be displayed on the keypad.
5. Fault or alarm LED shall blink
6. Display drive data at time of fault
7. In the event several faults occur simultaneously, the sequence of active faults shall be viewable.

L. Additional features included in the VFC:
1.
2. The following indicating lights shall be provided on the keypad.
 a. Drive Ready
c. Drive Run
d. Drive Fault
3.
4.
5. The current withstand rating of the drive shall be 100,000 AIC. The rating of the complete drive assembly shall be UL tested per UL 508.
6. Communication card for interface with LonWorks control system.
7. The VFC shall have a cooling fan that is field replaceable.
M. Disconnecting Means
 1.
 2. Provide integrated manual incoming power disconnecting means, lockable, and external operating handle.

N. Enclosure
 1.
 2. Indoor: For VFC’s located indoors, provide a NEMA Type 1 enclosure.
 3. Outdoor: For VFC’s located outdoors, provide a NEMA Type 4 enclosure complete with A/C and heaters to accommodate the humid environment.
 4. The VFC shall have complete front accessibility with easily removable assemblies.
 5. Cable entry shall be bottom entry.

O. Extended Wireways
 1.
 2. Provide optional extended wireways as part of the equipment order on all VFC’s.

P. Options
 1.
 2. The VFC manufacturer shall maintain, as part of a national network, engineering service facilities within 250 miles of project to provide start-up service, emergency service calls, repair work, service contracts, maintenance and training of customer personnel.

2.3 IDENTIFICATION
 A. Identify VFCs, components, and control wiring according to Division 26 Section "Identification for Electrical Systems."
 B. Operating Instructions: Frame printed operating instructions for VFCs, including control sequences and emergency procedures. Fabricate frame of finished metal, and cover instructions with clear acrylic plastic. Mount on front of VFC units.

2.4 FACTORY FINISHES
 A. Finish: Manufacturer's standard color paint applied to factory-assembled and -tested VFCs before shipping.
 B.
 C.
PART 3 - EXECUTION

3.1 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Provide a factory-authorized service representative to perform the following:

1. Inspect controllers, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.
2. Assist in field testing of equipment including pre-testing and adjusting of solid-state controllers.
3. Take and record Harmonic readings at the input of each drive terminal and at the PCC. Take recordings at full speed and at 50% speed. Record and print a report for each VFC.
4. Report results in writing.

B. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

3.2 DEMONSTRATION

A. Provide a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain variable frequency controllers. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 26 29 23
SECTION 264313 - TRANSIENT-VOLTAGE SURGE SUPPRESSOR

PART 1 -

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes field-mounted TVSS for low-voltage (480VAC) for new 800 amp shunt trip enclosed circuit breaker. At the Weld County Maintenance Facility.

1.3 SUBMITTALS
 A. Product Data: For each type of product indicated. Include rated capacities, operating weights, electrical characteristics, furnished specialties, and accessories.
 B. Product Certificates: For TVSS devices, from manufacturer.
 C. Field quality-control reports.
 D. Operation and Maintenance Data: For TVSS devices to include in emergency, operation, and maintenance manuals.
 E. Warranties: Sample of special warranties.

1.4 QUALITY ASSURANCE
 A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.
 B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a testing agency, and marked for intended location and application.
 C. Comply with IEEE C62.41.2 and test devices according to IEEE C62.45.
 D. Comply with NEMA LS 1.
 E. Comply with UL 1283 and UL 1449.
 F. Comply with NFPA 70.
1.5 COORDINATION

A. Coordinate location of field-mounted TVSS devices to allow adequate clearances for maintenance.

B. Coordinate TVSS devices with Division 26 Section "Electrical Power Monitoring and Control."

1.6 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of surge suppressors that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SERVICE ENTRANCE SUPPRESSORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. ABB USA.
2. AC Data Solutions.
3. Advanced Protection Technologies Inc. (APT).
9. Intermatic, Inc.
10. LEA International.
12. Liebert Corporation; a division of Emerson Network Power.
15. Square D; a brand of Schneider Electric.

B. Surge Protection Devices:

1. LED indicator lights for power and protection status.
2. Audible alarm, with silencing switch, to indicate when protection has failed.
3. Fuses, rated at 200-kA interrupting capacity.
4. Fabrication using bolted compression lugs for internal wiring.
5. Integral disconnect switch.
6. Redundant suppression circuits.
7. Redundant replaceable modules.
8. Arrangement with wire connections to phase buses, neutral bus, and ground bus.
9. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.

10. Four-digit transient-event counter set to totalize transient surges.

C. Peak Single-Impulse Surge Current Rating: 320 kA per mode/640 kA per phase.

D. Minimum single impulse current ratings, using 8-by-20-mic.sec waveform described in IEEE C62.41.2

1. Line to Neutral: 70,000 A.
2. Line to Ground: 70,000 A.
3. Neutral to Ground: 50,000 A.

E. Protection modes and UL 1449 SVR for grounded wye circuits with 480Y/277 V, 3-phase, 4-wire circuits shall be as follows:

1. Line to Neutral: 800 V for 480Y/277 V.
2. Line to Ground: 800 V for 480Y/277 V.
3. Neutral to Ground: 800 V for 480Y/277 V.

2.2 ENCLOSURES

A. Outdoor Enclosures: NEMA 250 Type 3R.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install TVSS devices at service entrance on load side, with ground lead bonded to service entrance ground.

B. Install TVSS devices for panelboards and auxiliary panels with conductors or buses between suppressor and points of attachment as short and straight as possible. Do not exceed manufacturer's recommended lead length. Do not bond neutral and ground.

1. Provide multiple, [30] [60] [100]-A circuit breaker as a dedicated disconnecting means for TVSS unless otherwise indicated.

3.2 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
1. Verify that electrical wiring installation complies with manufacturer's written installation requirements.

C. Perform tests and inspections.

D. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS, "Surge Arresters, Low-Voltage Surge Protection Devices" Section. Certify compliance with test parameters.
 2. After installing TVSS devices but before electrical circuitry has been energized, test for compliance with requirements.
 3. Complete startup checks according to manufacturer's written instructions.

E. TVSS device will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

3.3 STARTUP SERVICE

A. Do not energize or connect service entrance equipment to their sources until TVSS devices are installed and connected.

B. Do not perform insulation resistance tests of the distribution wiring equipment with the TVSS installed. Disconnect before conducting insulation resistance tests, and reconnect immediately after the testing is over.

3.4 DEMONSTRATION

A. Train Owner's maintenance personnel to maintain TVSS devices.

END OF SECTION 264313
SECTION 265100 - INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes the following:
 1. Interior lighting fixtures, lamps, and ballasts.
 2. Lighting fixture supports.

1.3 SUBMITTALS
 A. Product Data: For each type of lighting fixture, arranged in order of fixture designation.
 Include data on features, accessories, finishes, and the following:
 B. Operation and Maintenance Data: For lighting equipment and fixtures to include in emergency,
 operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. In Lighting Fixture Schedule where titles below are column or row headings that introduce lists,
 the following requirements apply to product selection:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the
 manufacturers specified.

2.2 LIGHTING FIXTURES AND COMPONENTS, GENERAL REQUIREMENTS
 A. Recessed Fixtures: Comply with NEMA LE 4 for ceiling compatibility for recessed fixtures.
 B. Incandescent Fixtures: Comply with UL 1598. Where LER is specified, test according to
 NEMA LE 5A.
 C. Fluorescent Fixtures: Comply with UL 1598. Where LER is specified, test according to
 NEMA LE 5 and NEMA LE 5A as applicable.
 D. Metal Parts: Free of burrs and sharp corners and edges.
E. Sheet Metal Components: Steel, unless otherwise indicated. Form and support to prevent warping and sagging.

F. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

G. Reflecting surfaces shall have minimum reflectance as follows, unless otherwise indicated:

1. White Surfaces: 85 percent.
2. Specular Surfaces: 83 percent.
3. Diffusing Specular Surfaces: 75 percent.
4. Laminated Silver Metallized Film: 90 percent.

H. Plastic Diffusers, Covers, and Globes:

1. Acrylic Lighting Diffusers: 100 percent virgin acrylic plastic. High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 a. Lens Thickness: At least 0.125 inch minimum unless different thickness is indicated.
 b. UV stabilized.
2. Glass: Annealed crystal glass, unless otherwise indicated.

2.3 BALLASTS FOR LINEAR FLUORESCENT LAMPS

A. Electronic Ballasts: Comply with ANSI C82.11; instant-start type, unless otherwise indicated, and designed for type and quantity of lamps served. Ballasts shall be designed for full light output unless dimmer or bi-level control is indicated.

1. Sound Rating: A.
2. Total Harmonic Distortion Rating: Less than 10 percent.
3. Transient Voltage Protection: IEEE C62.41, Category A or better.
4. Operating Frequency: 20 kHz or higher.
5. Lamp Current Crest Factor: 1.7 or less.
6. BF: 0.85 or higher.
7. Power Factor: 0.95 or higher.
8. Parallel Lamp Circuits: Multiple lamp ballasts shall comply with ANSI C 82.11 and shall be connected to maintain full light output on surviving lamps if one or more lamps fail.

B. Electronic Programmed-Start Ballasts for T5 and T5HO Lamps: Comply with ANSI C82.11 and the following:

1. Lamp end-of-life detection and shutdown circuit for T5 diameter lamps.
2. Automatic lamp starting after lamp replacement.
3. Sound Rating: A.
4. Total Harmonic Distortion Rating: Less than 20 percent.
5. Transient Voltage Protection: IEEE C62.41, Category A or better.
6. Operating Frequency: 20 kHz or higher.
7. Lamp Current Crest Factor: 1.7 or less.
8. BF: 0.95 or higher, unless otherwise indicated.
9. Power Factor: 0.95 or higher.

C. Electromagnetic Ballasts: Comply with ANSI C82.1; energy saving, high-power factor, Class P, and having automatic-reset thermal protection.

D. Ballasts for Low-Temperature Environments:
1. Temperatures 0 Deg F and Higher: Electronic type rated for 0 deg F starting and operating temperature with indicated lamp types.
2. Temperatures Minus 20 Deg F and Higher: Electromagnetic type designed for use with indicated lamp types.

2.4 FLUORESCENT LAMPS
A. T8 rapid-start lamps, rated 32 W maximum, nominal length of 48 inches, 2800 initial lumens (minimum), CRI 75 (minimum), color temperature 3500 K, and average rated life 20,000 hours, unless otherwise indicated.

2.5 LIGHTING FIXTURE SUPPORT COMPONENTS
A. Comply with Division 26 Section "Hangers and Supports for Electrical Systems" for channel-and angle-iron supports and nonmetallic channel and angle supports.
B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as fixture.
C. Twin-Stem Hangers: Two, 1/2-inch steel tubes with single canopy designed to mount a single fixture. Finish same as fixture.
E. Wires for Humid Spaces: ASTM A 580/A 580M, Composition 302 or 304, annealed stainless steel, 12 gage.
F. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.
G. Hook Hangers: Integrated assembly matched to fixture and line voltage and equipped with threaded attachment, cord, and locking-type plug.
PART 3 - EXECUTION

3.1 INSTALLATION
 A. Lighting fixtures: Set level, plumb, and square with ceilings and walls. Install lamps in each fixture.

3.2 FIELD QUALITY CONTROL
 A. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery and retransfer to normal.

 B. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

END OF SECTION 265100
SECTION 283100 - FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes fire alarm systems.

B. The scope of the fire alarm system for this project is the addition of a fire alarm zone to the fire alarm panel from the CNG gas monitoring panel. A signal from this gas monitoring panel will indicate that the gas level has reached 50% LFL and a general fire alarm shall be annunciated and an alarm shall be sent to the off-site alarm monitoring facility.

C. The manufacturer and model type of the existing fire alarm system is a SIMPLEX 4002. Contractor should assume that there are no spare zones available and that additional hardware is required to accommodate the new zone required, unless confirmed by contractor prior to bid.

D. Fire alarm system changes/addition shall comply with the requirements specified herein, as well as all related documents and criteria related to this project (Fire Protection/Life Safety Analysis, State and Local Agency codes and criteria, etc.).

E. Fire alarm system is in criteria form only. Devices and/or circuiting required to meet the intent of these specifications are not indicated. While some devices may be shown on the drawings, the selected design/build contractor shall be responsible for all required modifications and additions to the device location shown on the drawings, as required to provide a complete and functioning system, AHJ compliant, at no additional cost to the Owner beyond the base bid.

F. The complete Project construction documents package forms the criteria for this work. The fire alarm design/build agency shall review all drawings and specifications issued for this project, especially those drawings prepared for fire protection systems, and mechanical ventilation equipment.

G. Provide additional equipment/functions as required to comply with other documents.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings:

1. Shop Drawings shall be prepared by persons with the following qualifications:
a. Trained and certified by manufacturer in fire alarm system design.
b. Fire alarm certified by NICET, minimum Level III.

2. System Operation Description: Detailed description for this Project, including method of operation and supervision of each type of circuit and sequence of operations for manually and automatically initiated system inputs and outputs. Manufacturer's standard descriptions for generic systems are not acceptable.

3. Device Address List: Coordinate with final system programming.
4. System riser diagram with device addresses, conduit sizes, and cable and wire types and sizes.
5. Wiring Diagrams: Power, signal, and control wiring. Include diagrams for equipment and system with all terminals and interconnections identified. Show wiring color code.
7. Floor Plans: Indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits.

C. Qualification Data: For Installer.

D. Field quality-control test reports.

E. Operation and Maintenance Data: For fire alarm system to include in emergency, operation, and maintenance manuals. Comply with NFPA 72, Appendix A, recommendations for Owner's manual. Include abbreviated operating instructions for mounting at the FACP.

F. Submittals to Authorities Having Jurisdiction: In addition to distribution requirements for submittals specified in Division 01 Section "Submittals," make an identical submittal to authorities having jurisdiction. To facilitate review, include copies of annotated Contract Drawings as needed to depict component locations. Resubmit if required to make clarifications or revisions to obtain approval. On receipt of comments from authorities having jurisdiction, submit them to Architect for review.

G. Documentation:

1. Approval and Acceptance: Provide the "Record of Completion" form according to NFPA 72 to Owner, Architect, and authorities having jurisdiction
2. Record of Completion Documents: Provide the "Permanent Records" according to NFPA 72 to Owner, Architect, and authorities having jurisdiction. Format of the written sequence of operation shall be the optional input/output matrix.

a. Hard copies on paper to Owner.
b. Electronic media may be provided to Architect.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Personnel certified by NICET as Fire Alarm Level II.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
1.5 PROJECT CONDITIONS

A. Interruption of Existing Fire Alarm Service: Do not interrupt fire alarm service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary guard service according to requirements indicated:

1. Notify Owner no fewer than three weeks in advance of proposed interruption of fire alarm service.
2. Do not proceed with interruption of fire alarm service without Owner's written permission.

1.6 SEQUENCING AND SCHEDULING

A. Existing Fire Alarm Equipment: Maintain fully operational until new equipment has been tested and accepted. As new equipment is installed, label it "NOT IN SERVICE" until it is accepted. Remove labels from new equipment when put into service and label existing fire alarm equipment "NOT IN SERVICE" until removed from the building.

B. Equipment Removal: After acceptance of the new fire alarm system, remove existing disconnected fire alarm equipment.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products compatible with the existing fire alarm system.

2.2 WIRE AND CABLE

A. Wire and cable for fire alarm systems shall be UL listed and labeled as complying with NFPA 70, Article 760.

B. Signaling Line Circuits: Twisted, shielded pair, size as recommended by system manufacturer.

 1. Circuit Integrity Cable: Twisted shielded pair, NFPA 70 Article 760, Classification CI, for power-limited fire alarm signal service. UL listed as Type FPL, and complying with requirements in UL 1424 and in UL 2196 for a 2-hour rating.

 1. Low-Voltage Circuits: No. 16 AWG, minimum.
 2. Line-Voltage Circuits: No. 12 AWG, minimum.
 3. Multiconductor Armored Cable: NFPA 70 Type MC, copper conductors, TFN/THHN conductor insulation, copper drain wire, copper armor with outer jacket with red identifier stripe, UL listed for fire alarm and cable tray installation, plenum rated, and complying with requirements in UL 2196 for a 2-hour rating.
PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

A. Connecting to Existing Equipment: Verify that existing fire alarm system is operational before making changes or connections.
 1. Connect new equipment to the existing control panel in the existing part of the building.
 2. Expand, modify, and supplement the existing control/monitoring equipment as necessary to extend the existing control/monitoring functions to the new points. New components shall be capable of merging with the existing configuration without degrading the performance of either system.

B. HVAC: Locate detectors not closer than 3 feet from air-supply diffuser or return-air opening.

3.2 WIRING INSTALLATION

A. Install wiring according to the following:
 1. NECA 1.
 2. TIA/EIA 568-A.

B. Wiring Method: Install wiring in metal raceway according to Division 26 Section "Raceway and Boxes for Electrical Systems."
 1. Fire alarm circuits and equipment control wiring associated with the fire alarm system shall be installed in a dedicated raceway system. This system shall not be used for any other wire or cable.

C. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.

D. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.

E. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and a different color-code for supervisory circuits. Color-code audible alarm-indicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.
3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals according to Division 26 Section "Identification for Electrical Systems."

B. Install instructions frame in a location visible from the FACP.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.

B. Perform the following field tests and inspections and prepare test reports:

1. Before requesting final approval of the installation, submit a written statement using the form for Record of Completion shown in NFPA 72.

2. Perform each electrical test and visual and mechanical inspection listed in NFPA 72. Certify compliance with test parameters. All tests shall be conducted under the direct supervision of a NICET technician certified under the Fire Alarm Systems program at Level III.

 a. Include the existing system in tests and inspections.

3. Visual Inspection: Conduct a visual inspection before any testing. Use as-built drawings and system documentation for the inspection. Identify improperly located, damaged, or nonfunctional equipment, and correct before beginning tests.

4. Testing: Follow procedure and record results complying with requirements in NFPA 72.

5. Test and Inspection Records: Prepare according to NFPA 72, including demonstration of sequences of operation by using the matrix-style form in Appendix A in NFPA 70.

3.5 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project outside normal occupancy hours for this purpose.

B. Follow-Up Tests and Inspections: After date of Substantial Completion, test the fire alarm system complying with testing and visual inspection requirements in NFPA 72. Perform tests and inspections listed for three monthly, and one quarterly, periods.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain the fire alarm system, appliances, and devices. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 283100
SECTION 284000 - CNG GAS MONITORING SYSTEM

PART 1 - GENERAL

1.1 SCOPE OF WORK

A. The Contractor shall design, engineer, fabricate, permit, install, test and insure a methane detection early warning system and components work seamlessly together. The methane detection system shall minimize the risk to County personnel and facilities in the event of a release of gaseous natural gas from within the Vehicle Maintenance Facility.

B. The systems shall meet all applicable codes and standards. It is the Contractor's responsibility to determine all appropriate regulations.

C. The major components, shall be designed and manufactured per US codes and standards including appropriate stamps and labels, and must be approved by the City of Greeley. All remaining construction activities must be performed by Contractors and subcontractors bonded and licensed in the State of Colorado. Contractors will be required to obtain a business license from the city of Greeley, Colorado.

D. Scope of work also includes the addition

1. Telecommunication wiring and raceways from the CNG monitoring panel to the building’s telephone demark point, along with a new autodialer piece of equipment to automatically call an owner designated phone number upon a 25% LFL alarm signal from the CNG monitoring panel.

2. Fire alarm signal wiring and raceways from the CNG monitoring panel to the building’s fire alarm panel, along with the necessary modifications to the fire alarm panel to automatically cause a fire alarm annunciation and alarm upon a 50% LFL alarm signal from the CNG monitoring panel.

1.2 SYSTEM DESIGN

A. The selection of components and layout shall be based on all Code parameters set in the NFPA 30A Motor Fuel Dispensing Facilities and Repair Garages and NFPA 52 Vehicular Fuel Systems Code. Contractor shall install and/or perform the following:

1. CNG detection system.

2. Uninterrupted Power Supply (UPS) for gas detection operating system.

3. Auto dialer for emergency agency notification.

4. Horn and strobe assemblies and associates power supplies.

5. Warning light and horn assemblies with interior/exterior green, amber and red units.

6. Point detection Infrared gas monitors with transmitters.

7. Gas monitoring control panel.

8. Modification to electrical systems within 18” of ceiling at designated locations to comply with classified locations, rerouting and replacement conduits, junction boxes removal and/or lighting fixtures lowered.

9. Raceways and wiring associated with CNG detection system as required by this specification, the drawings, as for proper operation and functioning of the system.
1.3 CONTRACTOR PROVISIONS.

A. Contractor shall provide the following:

B. Permitting. Secure all permit approvals and provide evidence to Weld County (Owner).

C. Preliminary Drawings. Submit all detailed drawings, specifications, calculations and all other related documents required for permit acquisitions, schedule permit inspections, and final sign-off of permits.

D. Drawings shall include vehicle maintenance facility layout, methane detection zones, and air exchange requirements as well as electrical schematic layout to operate service bay doors and audible alarm and lights for the gas detection system at the Vehicle Maintenance Facility. The City shall approve all proposed systems before Contractor proceeds with detailed design and engineering. The plot plan and schematic shall include major components, grounding, heater locations, and LED strobe lights: exhaust vents with dampeners, equipment configuration and location, and emergency shutdown devices.

E. Codes and Standards. The drawings must be proven to provide early warning and or exceed Colorado and Fire Codes for the repair and maintenance of CNG vehicles in an open garage. The system shall be designed in full compliance with the latest edition of the applicable sections of the following codes, standards and guidelines. Where conflict exists, Contractor shall follow the most stringent or the direction of the Authority Having Jurisdiction (AHJ).

1. American National Standards Institute (ANSI)
2. American Society of Testing Materials (ASTM)
3. American Institute of Steel Construction (AISC)
4. American Welding Society (AWS)
5. National Institute of Standards and Testing (NIST)
7. International Fire Code (IFC)
8. National Fire Protection Association (NFPA)
9. National Electrical Code (NEC)
10. National Electrical Manufacturers Associations (NEMA)
11. Underwriters Laboratory (UL)
12. Factory Mutual (FM)
13. American Gas Association Natural Gas Vehicles (AGA-NGV)

F. Safety Requirements. The complete set of drawings and specification package shall include dedicated safety drawings related to system safety signs and labels.

G. Emergency Evacuation Map. Contractor shall develop and provide an "Emergency Evacuation Map" that shall be posted in a minimum of four (4) locations within the Vehicle Maintenance Facility. Maps shall be printed and laminated onto durable material and placed on an aluminum panel, in a frame that has tempered glass to protect it from the Vehicle Maintenance Facility elements.

H. Final Drawings. All design and engineering calculations, drawings and specifications must be stamped and signed by Registered Engineers in the State of Colorado with specialty knowledge appropriate for the work being approved.
I. Contractor shall develop the final design documents, consisting of the vehicle maintenance facility layout, flow schematic, and schedule. Contractor shall provide final as build drawings at the completion of the project to be provided to the City in the forms as listed:

PART 2 - PRODUCTS

2.1 EQUIPMENT

A. Contractor shall acquire, fabricate and install all methane detection systems and components for the complete system Integration.

2.2 SYSTEM INTERFACE

A. The CNG detection system shall have an operator interface dedicated to communication to gas detectors with an intuitive graphical interface and have a minimum visible display of 7”. The intuitive display shall have zones listing all sensors and locations and include a touch screen capability as well as stored memory of at least 8mb and include a compact flash socket with increased memory of 32 gigs. The system shall have a Ethernet port audible alarm and remote Web access and be enclosed In a NEMA 4x/IP66 panel with sixteen programmable relays, and must be capable of opening bay doors, turn off radiant heating system and activate updraft ventilation system and turn on strobe lights. In addition system shall have a battery back-up to ensure operation for a minimum of two hours, In the event of a power failure. Panel shall be located in a place that can be easily viewed in the event of an incident. Reference: SEC 3500 HM/ from Sensor Electronics Corporation (SEC) or approved equal.

2.3 GAS DETECTORS

A. The methane detection system shall be low maintenance/maintenance free gas detectors that works with the main detection panel designed for harsh environments and continuous self-test and have a multi-layered filtering system to protect optics from dirt and water. System must be explosion proof and have a 0-100% LFL detection range and include universal transmitter with memory card and data logging. Reference: SEC 3100 with Millennium Infrared Hydrocarbon Gas Detector or approved equal.

2.4 WARNING LIGHTS and HORNS

A. Warning lights and horns will be placed in the maintenance facility and will activate at a predetermined LEL. Placement of horns and lights will be approved by Weld County (Owner) prior to placement. The lights shall be green, amber and red LED mounted to a single square mounting bracket spaced away from the wall and visible by approaching persons. An agreed visible distance shall be established prior to mounting. In addition an audible alarm shall also be mounted next to or on the same mounting block as the LED notification warning lights. Green LED light shall be a steady illuminated light when all systems are normal. The amber LED light shall be a flashing light when the predetermined 25% LEL has been sensed by the CNG detection system in the maintenance facility and shut off when the system reaches 50% LEL. The red LED light shall strobe when the LEL level reaches 50% LEL. The audible alarm will
start with a lower level tone when methane reaches 25% LEL and rise to a higher level when the LEL reaches 50% LEL. Reference: Edwards Signaling, 105 Series for LED lights and 5531M Series for horn or approved equal.

2.5 UNINTERRUPTED POWER SUPPLY (UPS).

A. The CNG detection system shall have a backup battery system capable of XX hours support, to ensure that the system stays operational in the event that the emergency power does not activate. System shall be tested to verify that the gas detection and emergency system function in the event of a power outage.

PART 3 - EXECUTION

3.1 GENERAL

A. Installation. Contractor shall coordinate with the Owner to minimize disruption to the daily operations of the Vehicle Maintenance Facility. Contractor shall be responsible and accountable for the complete construction of the Vehicle Maintenance Facility modifications, including associated electrical systems, grounding, safety signs, and a gas detection and alarm system with remote monitoring annunciator panel.

B. Contractor shall perform the following:
 1. Performance Testing. Contractor shall conduct system performance testing to confirm the system meets all mechanical and electrical performance as designed
 2. In detection of CNG activating necessary early warning systems for the safety of all staff with in effected safety zone. Contractor shall utilize a checklist sheet(s) for testing safety equipment and shall be provide copy of all test sheets to the County at final acceptance by the City. Contractor shall include the County in the safety audit upon completion of the installation. Test results shall meet or exceed the performance specifications criteria.
 3. Training. Contractor shall train County staff and local Fire Department on all aspects of mechanical, electrical, emergency response, system deactivation and isolation, and safety equipment operation of the methane detection system.

3.2 MANUALS

A. Contractor shall provide the following:
 1. A detailed user training program manual in hard copy and in pdf format.
 2. Three (3) 8” x 11” bound photocopies of "Operations and Maintenance” manuals containing methane detection system, components/parts and include operating procedures and vendor/manufacturer information. Also in pdf format.

END OF SECTION 284000